
Chapter 4

Stacks of Software Stacks

By Andrew Rowley, Oliver Rhodes, Petrut, Bogdan,
Christian Brenninkmeijer, Simon Davidson, Donal Fellows,
Steve Furber, Andrew Gait, Michael Hopkins, David Lester,

Mantas Mikaitis, Luis Plana, and Alan Stokes

Copyright © 2020 Andrew Rowley et al.
DOI: 10.1561/9781680836530.ch4

The work will be available online open access and governed by the Creative Commons “Attribution-Non
Commercial” License (CC BY-NC), according to https://creativecommons.org/licenses/by-nc/4.0/

Published in SpiNNaker – A Spiking Neural Network Architecture by S. Furber and P. Bogdan (eds.). 2020.
ISBN 978-1-68083-596-0. E-ISBN 978-1-68083-653-0.

Suggested citation: Andrew Rowley et al. 2020. “Stacks of Software Stacks” in SpiNNaker – A Spiking
Neural Network Architecture. Edited by S. Furber and P. Bogdan. pp. 79–128. Now Publishers.
DOI: 10.1561/9781680836530.ch4.

http://dx.doi.org/10.1561/9781680836530.ch4
https://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.1561/9781680836530.ch4

All hope abandon, ye who enter here.

— Dante Alighieri, Inferno

Alongside the job of designing and producing the hardware, there is the equally
challenging task of constructing software that allows users to exploit the capabilities
of the machine. Using a large parallel computing system such as SpiNNaker often
requires expert knowledge to be able to create and debug code that is designed to be
executed in a distributed and parallel fashion. More recently, software stacks have
been created which try to abstract this process away from the end user by the use of
explicit interfaces or by defining the problem in a form which is easier to map into a
distributed system. In this chapter, we describe the SpiNNaker software stacks upon
which most of the applications described in subsequent chapters are supported. It
is built by merging slightly modified versions of the work presented by Rowley et al.
[213], covering the software tools that allow the running of generic applications –
the SpiNNaker Tools (SpiNNTools); and Rhodes et al. [207], covering the tools
that specifically support the simulation of Spiking Neural Networks (SNNs) – the
SpiNNaker backend for PyNN (sPyNNaker).

79

80 Stacks of Software Stacks

Figure 4.1. Applications using SpiNNTools to control SpiNNaker.

4.1 Introduction

A growing number of users are now using SpiNNaker for a wide range of tasks,
including Computational Neuroscience [3] and Neurorobotics [1, 48, 209] for
which the platform was originally designed, but also machine learning [240], and
general parallel computation tasks, such as Markov Chain Monte Carlo inference
computations [161]. The provision of a software stack for this platform aims to
provide a base for the various applications, making it easier for them to exploit the
full potential of the platform. Additionally, users will gain the advantage of any
improvement in the underlying tools without requiring changes to their software
(or at most only minor interface changes should they be required). A basic overview
of this approach is seen in Figure 4.1.

The software stack allows the user to describe their computational requirements
in the form of a graph, where the vertices represent the units of computation,
and the edges represent the communication of data between the computational
units. This graph is described in a high-level language and the software then maps
this directly onto an available SpiNNaker machine. The SpiNNaker platform as
a whole is intended to improve the overall execution time of the computational
problems mapped onto it, and so the time taken to execute this mapping is critical;
if it takes too long, it will dwarf the computational execution time of the problem
itself.

The problem of writing code to run on the cores of the SpiNNaker machine
is discussed in more detail by Brown et al. [25], along with the types of applica-
tions which might be suitable to execute on the platform. The software assumes
that the application has already been designed to run in parallel on the platform;
the SpiNNTools software then works to map that parallel application onto the
machine, execute it and extract any results, along with any relevant data about
the machine.

Making Use of the SpiNNaker Architecture 81

4.2 Making Use of the SpiNNaker Architecture

The nature of the SpiNNaker chip has important implications for the software
running on the system. This section is a short recap of Chapters 2 and 3. Firstly, it
must be possible to break up the computation of the application into units small
enough that the code for each part fits on a single core. The SDRAM is shared
between the cores on a single chip, and this property can be used by the application
to allow cores to operate on the same data within the same chip. A small amount of
data can be shared with cores operating on other chips as well through communica-
tion via the SpiNNaker router. The SpiNNaker boards can be connected together
to form an even larger grid of chips, so appropriately parallelisable software could
potentially be scaled to run on up to 1 million cores.

The SpiNNaker router is initially set up to handle the routeing of system-level
data. The data to be sent by applications make use of the multicast packet type,
meaning that a packet sent from a single source can be routed to multiple destina-
tions simultaneously. To make multicast routeing work, the routeing tables of the
router must be set up; this process is described in Section 4.7.

Each chip has an Ethernet controller, although in practice only one chip is
connected to the Ethernet connector on each board. The chip with the Ethernet
connected to it is then called the Ethernet chip, and this is used to communicate
with the outside world, allowing, for example, the loading of data and applica-
tions. Communications with other chips on a board from outside of the machine
must therefore go via the Ethernet chip; system-level packets are used to effect
this communication between chips. In practice, the Ethernet connector of every
board in a SpiNNaker machine is connected and configured, although this is not
a requirement.

SpiNNaker machines are designed to be fault tolerant, so it is possible to have a
functional machine with some missing parts. For example, it is normal that some
of the SpiNNaker chips have 17 instead of 18 working cores, and sometimes even
fewer than this as operational cores are tested more thoroughly than the testing
done at manufacture. Additionally, machines can have whole chips that have been
found to have faults, as well as some links broken between the chips and boards.
The machine includes memory onto which faults can be stored statically in a black-
list, so that during the boot process these parts of the machine can be hidden to
avoid using them.

SpiNNaker machines can be connected to external devices through either
a SpiNNaker link connector, of which there is one on every 48-node board, or a
spiNNlink SATA connector, of which there are 9 on each board; of those, 6 are used

82 Stacks of Software Stacks

to connect to other boards. This, along with the low power requirements, makes
the machine particularly useful for robotics applications, since the board can be
connected directly to the robot without any need of other equipment. The only
requirement is that the external devices must be configured to talk to the machine
using SpiNNaker packets. The links can be configured to connect directly to a sub-
set of the SpiNNaker chips on the board, and entries in the routeing tables of those
chips can be used to send packets to any connected device and to route packets
received from the devices across the SpiNNaker network.

4.3 SpiNNaker Core Software

The ARM968 cores can execute instructions from the ITCM using the ARM or
Thumb instruction sets; generally, this code is generated from compiled C code
using either the GNU’s Not Unix (GNU) gcc compiler1 or the ARM armcc com-
piler.2 To this end, a library known as the SpiNNaker Application Runtime Kernel
(SARK) has been written which allows access to the features of the SpiNNaker core
and chip [25]. Additionally, software called the SpiNNaker Control And Monitor
Program (SCAMP) has also been written which allows one of the cores to operate
as a monitor processor through which the chip can be controlled [25], allowing,
for example, the loading of compiled applications onto the other cores of the chip,
the reading and writing of the SDRAM, the loading of the SpiNNaker routeing
tables and, of course, controlling the operation of the chip’s blinkenlight. SCAMP
software can also map out parts of the machine known to be faulty when it is first
loaded. Thus, when a description of the machine is obtained via SCAMP, only
working parts should be present. The list of faults is stored on the boards them-
selves and can be updated dynamically if other parts are subsequently found to be
faulty.

The SCAMP code can be loaded onto one core on every chip of the machine,
and these cores then coordinate with each other allowing communication to any
chip via any Ethernet connector on the machine (see below). This communication
makes use of the SpiNNaker Datagram Protocol (SDP) [64], which is encapsulated
into User Datagram Protocol (UDP) packets when going off machine to external
devices. Communication out of the machine from any core is achieved by using
Internet Protocol (IP) Tags. The SCAMP monitor processor on each Ethernet chip
maintains a list of up to 8 IP Tags, which maps between values in the tag field of the

1. https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

2. https://developer.arm.com/products/software-development-tools/compilers/legacy-compiler-releases

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/products/software-development-tools/compilers/legacy-compiler-releases

Booting a Million Core Machine 83

SDP packets and an external IP address and port. When a packet is received that is
destined to go out via the Ethernet (identified in the SDP packet header), this table
is consulted and an UDP packet is formed containing the packet and this is sent
to the IP address and port given in the table. The table can also contain Reverse IP
Tags, where an UDP packet received from an external source is mapped from the
UDP port in the packet to a specific chip and core on the machine, where the data
of the packet are extracted and put into an SDP packet before being forwarded to
the given core.

SARK provides a hardware abstraction layer, simplifying interaction with
the DMA, network interface and communications controllers. SpiNNaker1 API
(SpiN1API) provides an event-based operating system, as shown in Figure 4.16,
with three processing threads per core: one for task queuing, one for task dis-
patch and one to service Fast Interrupt Request (FIQ). SpiN1API also pro-
vides the mechanism to link software callbacks to hardware events and enables
triggering of actions such as sending a packet to another core and initiating a
DMA. Callbacks are registered with different priority levels ranging from −1 to
2 depending on their desired function, with lower numbers scheduled prefer-
entially. Callback tasks of priority 1 and 2 can be queued (in queues of maxi-
mum length 15), with new events added to the back of the queue. Callbacks of
priority −1 and 0 are not queued, but instead pre-empt tasks assigned higher
priority level numbers. Operation of this system follows the flow detailed in
Figure 4.16(a).

The scheduler thread places callbacks in queues for priority levels 1 and above,
and the dispatcher picks these callbacks and executes them based on priority. When
the dispatcher is executing a callback of priority 1 or higher, and a callback of pri-
ority 0 is scheduled, this task pre-empts that currently being executed causing it to
be suspended until the higher priority callback has completed. Callbacks of priority
−1 use the FIQ thread to interact with the scheduler and dispatcher, enabling fast
response and pre-emption of priority 0 and above tasks. Pointers are stored allowing
fast access to the callback code, and the processor switches to FIQ banked registers
to avoid the need for stacking [230], optimising the response time of priority −1
callbacks. However, this optimised performance limits the application to registering
only a single −1 priority event and callback.

4.4 Booting a Million Core Machine

The process of booting the machine is shown in Figure 4.2. When the machine
is first powered up, the cores on every chip start executing the boot ROM image.
This is stored within the chip and cannot be altered. After testing the ITCM and

84 Stacks of Software Stacks

Figure 4.2. The stages of the SpiNNaker boot process.

Figure 4.3. Booting SCAMP on the machine. (a) The SCAMP image is encoded in

SpiNNaker boot messages and sent to the machine, where it is loaded on to the selected

monitor processor of the Ethernet chip. (b) The SCAMP image is sent to neighbouring

chips, which might include chips on adjacent boards, using NN packets.

DTCM of the core, the image then proceeds to determine if the core executing it
is to be the monitor, through reading a mutex in the chip’s System Controller; the
first core to read this locks the mutex and so becomes the monitor. The processor
selected as monitor now performs further tests on the shared parts of the chip.

Once the tests are complete, the Ethernet chips are set up to listen for boot
messages being transmitted using UDP on port 54321. As shown in Figure 4.3(a),
the host now sends the SCAMP image to one of these Ethernet chips; it is not
critical which of these is selected, as the SCAMP software is set up to work out
the dimensions of the machine and the coordinates once it has been loaded. The
boot messages consist of a start command, followed by a series of 256-byte data
blocks (with an appropriate header to indicate the order), followed by a comple-
tion command. If all the blocks are successfully received and assembled, the code
stored in the data blocks is copied to the ITCM of the monitor processor and
executed.

The current version of the SCAMP application starts with an initialisation phase
where various parts of the hardware on the chip are set up for operation. The

Booting a Million Core Machine 85

code is then transferred to all neighbouring chips using NN packets, as shown
in Figure 4.3(b). Note that at this point, SCAMP does not know how many
chips are there in the whole machine, and P2P routeing tables have not been
initialised, so the only protocol available for communication between the chips
is nearest neighbour. To this end, SCAMP establishes a protocol to determine
whether to forward NN packets received to other neighbouring chips, and down
which links.

Once the image has been transferred, the core now enters the ‘netinit’ stage,
whereby communications with all other chips on the board is established, and the
point-to-point routeing tables are built. This stage proceeds as follows:

1. Address Phase. During this phase, each SCAMP computes and sends out its
computed coordinates based on the coordinates it receives from its neigh-
bours; for example, if it receives [0, 0] from the ‘west’ link, it will assume
that its coordinates are [0, 1], and if it receives [0, 0] from the ‘north’ link, it
will assume its coordinates are [−1, 0] (coordinates are allowed to be nega-
tive at this stage). This phase continues until no new coordinates are received
within a given time period.

2. Dimensions Phase. Each SCAMP sends its perceived dimensions of the
machine based on the dimensions received from its neighbours. This again
continues until no change of dimensions has occurred within a given time
period.

3. Blacklisting Phase. The blacklist is sent from the Ethernet chip of each board
to the other chips on the same board. This may result in the current monitor
core discovering it is blacklisted. This is noted and delegation is then set up.

4. Point-to-Point Table Phase. Each SCAMP sends its coordinates once again,
and these are forwarded on along with a hop count, so that every chip receives
them eventually. These are used to update the point-to-point tables based on
the direction in which the coordinates are received, along with the hop count
to allow the use of the shortest route.

5. Monitor Delegation Phase. If the current SCAMP core has been blacklisted,
it now delegates to another core that has not. This is done at this late stage
to avoid interfering with the rest of the setup process.

Note that delegation of a blacklisted monitor core will not happen until after the
‘netinit’ phase has completed. The monitor core tends to be selected from a subset
of the cores on the chip due to manufacturing properties; this means that boards
where a core which is in this subset is so broken that it cannot perform the steps
up to this point will not work with this system. A possible future change would
therefore be to perform the blacklisting phase earlier in the process.

86 Stacks of Software Stacks

4.5 Previous Software Versions

Using SpiNNaker machines in the past required end users to load compiled applica-
tions and routeing tables manually onto the SpiNNaker machine through the use of
the low level ybug software included with the aforementioned libraries.3 Other soft-
ware was then designed to ease the development of application code for end users.
These consisted of: the aforementioned low-level libraries SARK and SpiN1API,
and the monitor core software SCAMP, a collection of C code which represented
models known in the neuroscience community and defined by the PyNN 0.6
language [44] and a collection of Python code which translates PyNN models onto
a SpiNNaker machine. These pieces of software were amalgamated into a software
package known as PACMAN 48 [68] and supported the main end-user commu-
nity of computational neuroscientists for a number of years. These tools had the
following limitations:

• They only supported SpiNNaker machines consisting of a single SpiNN-3
or SpiNN-5 board.

• They were designed to support only the computational neuroscience
community, and thus, non-neural applications were not supported.

• End users were still expected to have expertise in using the SpiNNaker hard-
ware. This was required as they were expected to run separate scripts manu-
ally, which together and in this order:

1. Boot the SpiNNaker machine,
2. Load executables onto the SpiNNaker machine,
3. Load data objects onto SpiNNaker,
4. Check when the executing code finished,
5. Extract data from the SpiNNaker machine.

It was decided that a new software stack should be built to address these issues.
The intention of this is to support a range of suitable applications executing on
the SpiNNaker hardware by providing a flexible abstraction layer where the end
user represents their problem as a graph, which is then executed on the SpiNNaker
machine without requiring such a low-level knowledge of how the machine works,
thus overcoming the issues mentioned above. This concept is briefly mentioned as
‘The Uploader’ by Brown et al. [25], although the framework is more complete in
that it also:

• allows the user to express the generation of the data structures to be loaded
(and possibly reloaded when changes have been made);

3. Available from https://github.com/SpiNNakerManchester/spinnaker_tools/releases

https://github.com/SpiNNakerManchester/spinnaker_tools/releases

Data Structures 87

• controls the execution flow of the application where required;
• aids in the storage and retrieval of data recorded during the execution;
• and extracts and presents provenance data which can be used to determine

the correctness of the results.

4.6 Data Structures

4.6.1 SpiNNaker Machines

A SpiNNaker machine is represented as a set of Python classes as shown in
Figure 4.4, with a main Machine class which then contains instances of classes
for each of the parts of the machine represented. This data structure includes the
important details of the machine for mapping purposes, including the chips, cores
and links available, as well as the speed of each core, and the SDRAM available and
the number of routeing entries available on each chip (in case some of this resource
is used by the system software, as it is in the case of SCAMP). As well as inter-
nally representing a physical, real-world machine with all its faults mapped out,
this representation also allows the instantiation of a virtual machine for testing in
the absence of connected hardware. The virtual machine can be further modified
to simulate hardware faults and analyse software behaviour.

The connection of external devices, such as a silicon retina or a motor to the
machine, is represented using ‘virtual chips’. A virtual chip will be given coordi-
nates of a chip that does not exist in the physical machine and is therefore marked
as virtual. The coordinates do not have to align with the rest of the machine, as
the location where the chip is connected to the other real chips in the machine is
also identified. This allows any algorithm to detect that virtual chips are present if

Figure 4.4. The Python class hierarchy for SpiNNaker Machine representation. The

machine contains a list of chips, and each chip contains a router, an SDRAM and a list

of processor objects, each with their respective properties. A VirtualMachine can also be

made, which contains the same objects but can be identified as being virtual by the rest

of the tools.

88 Stacks of Software Stacks

necessary and also to know where the connected real chip is to make use of that if
needed.

4.6.2 Graphs

A graph in SpiNNTools consists of vertices and directed edges between the vertices.
The vertex is considered to be a place where computation takes place, and as such,
each vertex has a SpiNNaker executable binary associated with it. An edge repre-
sents some communication that will take place from a source, or pre-vertex to a
target, or post-vertex. An additional concept is that of the outgoing edge partition;
this is a group, or partition, of edges that all start at the same pre-vertex, as shown
in Figure 4.5(b). This is useful to represent a multicast communication. Note that
not all edges that have the same pre-vertex have to be in the same outgoing edge
partition; there can be more than one outgoing edge partition for each source vertex.
This represents different message types, which might be multicast to different sets
of target vertices. Thus, each outgoing edge partition has an identifier, which can
be used to identify the type of message to be multicast using that partition.

Figure 4.5. Graphs in SpiNNTools. (a) A Machine Graph made up of two Machine Vertices

connected by a Machine Edge, indicating a flow of data from the first to the second.

(b) A Machine Vertex sends two different types of data to two subsets of destination

vertices using two different Outgoing Edge Partitions, identified by solid and dashed

lines respectively. (c) An Application Graph made up of two Application Vertices, each

of which contain two and four atoms, respectively, connected by an Application Edge,

indicating a flow of data from the first to the second. (d) A Machine Graph created from

the Application Graph in (c) by splitting the first Application Vertex into two Machine

Vertices which contain two atoms each. The second Application Vertex has not been

split. Machine Edges have been added so that the flow of data between the vertices in

still correct.

Data Structures 89

Figure 4.6. The relationship between the graph objects. An ApplicationGraph contains

ApplicationVertex objects and OutgoingEdgePartition objects, which contain Applica-

tionEdge objects in turn. A MachineGraph similarly contains MachineVertex objects and

OutgoingEdgePartition objects, which contain MachineEdge objects in turn. Applica-

tionEdge objects have pre- and post-vertex properties which are ApplicationVertex

objects, and similarly MachineEdge objects and pre- and post-vertex properties which

are MachineVertex objects. An ApplicationVertex can create a number of MachineVertex

objects for a subset of the atoms contained therein and an ApplicationEdge can create

a number of MachineEdge for a subset of atoms in the pre- and post-vertices.

There are two types of graph represented as Python classes in the tools (a dia-
gram can be seen in Figure 4.6). A Machine Graph, an example of which is shown
in Figure 4.5(a), is one in which each vertex (known as a Machine Vertex) is guaran-
teed to be able to execute on a single SpiNNaker processor. A Machine Edge there-
fore represents communication between cores. In contrast, an Application Graph,
an example of which is shown in Figure 4.5(c), is one where each vertex (known
as an Application Vertex) contains atoms, where each atom represents an atomic
unit of computation into which the application can be split; it may be possible
to run multiple atoms of an Application Vertex on each core. Each edge (known
as an Application Edge) represents communication of data between the groups of
computational units; if one or more of the atoms in an Application Vertex com-
municates with one or more atoms in another Application Vertex, there must be
an Application Edge between those Application Vertices. It is not guaranteed that
all the atoms on an Application Vertex fit on a single core, so the instruction code
for Application Vertices should know how to process a subset of the atoms, and
how to handle a received message and direct it to the appropriate atom or atoms.
The graph classes support adding and discovering vertices, edges and outgoing edge
partitions.

90 Stacks of Software Stacks

As the vertices represent the application code that will run on a core, they have
methods to communicate their resource requirements, in terms of the amount of
DTCM and SDRAM required by the application, the number of Central Process-
ing Unit (CPU) cycles used by the instructions of the application code to maintain
any time constraints, and any IP Tags or Reverse IP Tags required by the applica-
tion. The Application Vertex provides a method that returns the resources required
by a continuous range or slice of the atoms in the vertex; this is specific to the exact
range of atoms, allowing different atoms of the vertex to require different resources.
The Application Vertex additionally defines the maximum number of atoms that
the application code can execute at a maximum on each core of the machine (which
might be unlimited) and also the total number of atoms that the vertex represents.
These allow the Application Vertex to be broken down into one or more Machine
Vertices as seen in Figure 4.5(d); to this end, the Application Vertex class has a
method for creating Machine Vertex objects for a continuous range of atoms. A
Machine Vertex can return the resources it requires in their entirety.

The graphs additionally support the concept of a Virtual Vertex. This is a vertex
that represents a device connected to a SpiNNaker machine. The Virtual Vertex
indicates which chip the device is physically connected to, allowing the tool chain to
work with this to include the device in the network. As with the other vertices, there
is a version of the Virtual Vertex for each of the machine and application graphs.

4.7 The SpiNNTools Tool Chain

The aim of the SpiNNTools tool chain is to control the execution of a program
described as a graph on the SpiNNaker machine. The software is executed in several
steps as shown in Figure 4.7 and detailed below.

Figure 4.7. The execution work flow of SpiNNTools in use within an application. Once

control has returned to the application, the flow can be resumed at different stages

depending on what has changed since the last execution.

The SpiNNTools Tool Chain 91

4.7.1 Setup

The first step in using SpiNNTools is to initialise them. At this point, the user can
specify appropriate configuration parameters, such as the time step of the simula-
tion, and the location where binary files can be located on the host machine. The
tool chain then sets up the initially empty graphs and reads in configuration files for
further options, such as the SpiNNaker machine to be used. Options are separated
out in this way to allow script-level parameters which might apply no matter where
the script is run (like the timestep of the simulation), from user-level parameters,
which will be different per-user, but likely to be common across multiple scripts
for that user (like the SpiNNaker machine to be used).

4.7.2 Graph Creation

Once the tool chain has been initialised, the user can add vertices and edges to
either an application or machine graph. It is an error to add vertices or edges to
both of these structures. The tool chain keeps track of the graph as it is built up.
Users can extend the vertex and edge classes to add additional information relevant
to their own application.

4.7.3 Graph Execution

Once the user has built their graph, they then call one of the methods provided
to start execution of the graph. Methods are provided to run for a specified period
of time, to run until a completion state is detected (such as all cores being in an exit
state having completed some unit of work), or to run ‘forever’ meaning that execu-
tion can be stopped through a separate call to SpiNNTools at some indeterminate
time in the future, or the execution can be left on the machine to be stopped out-
side of the tool chain by resetting the machine. The graph execution itself consists
of several phases shown in the lower half of Figure 4.7 and detailed below.

Machine Discovery

The first phase of execution is the discovery of the machine to be executed on.
If the user has configured the tool chain to run on a single physical machine, this
machine is contacted, and if necessary booted. Communications with the machine
then take place to discover the chips, cores and links available. This builds up a
Python machine representation to be used in the rest of the tool chain.

If a machine is to be allocated, SpiNNTools must first work out how big a
machine to request, by working out how many chips the user-specified graph
requires. If a machine graph has been provided, this can be used directly, since
the number of cores is exactly the number of vertices in the graph. The resources
must still be queried, as the SDRAM requirements of the vertices might mean that

92 Stacks of Software Stacks

not all of the cores on each chip can be used. For example, a graph consisting of
10 machine vertices, each requiring 20 MByte of SDRAM and thus 200 MByte of
SDRAM overall, will not fit on a single chip in spite of there being enough cores.

If an application graph is provided, this must first be converted into a machine
graph to determine the size of the machine. This is done by executing some of the
algorithms in the mapping phase (see below).

Mapping

The mapping phase takes the graph and maps it onto the discovered machine. This
means that the vertices of the graph are assigned to cores on the machine, and
edges of the graph are converted into communication paths through the machine.
Additionally, other resources required by the vertices are mapped onto machine
resources to be used within the simulation.

If the graph is an application graph, it must first be converted to a machine
graph. This may have been done during the machine discovery phase as described
previously. To allow this, the algorithm(s) used in this ‘graph partitioning’ process
are kept separate from the rest of the mapping algorithms.

Once a machine graph is available, this is mapped to the machine through a
series of phases. This must generate several data structures to be used later in the
process. These include:

• a set of placements detailing which vertex is to be run on which core of the
machine;

• a set of routeing tables detailing how communications over edges are to pass
between the chips of the machine;

• a set of routeing keys detailing the range of keys that must be sent by each ver-
tex to communicate over each outgoing edge partition starting at that vertex;

• a set of IP tags and reverse IP tags identifies which external communications
are to take place through which Ethernet-connected chip.

Note that once machine has been discovered, mapping can be performed entirely
separately from the machine using the Python machine data structures created.
However, mapping could also make use of the machine itself by executing specially
designed parallel mapping executables on the machine to speed up the execution.
The design of these executables is left as future work.

Mapping information can be stored in a database by the system. This allows for
external applications which interact with the running simulation to decode any live
data received. As shown in Figure 4.7, the applications can register to be notified
when the database is ready for reading and can then notify SpiNNTools when they
have completed any setup and are ready for the simulation to start, and when the
simulation has finished.

The SpiNNTools Tool Chain 93

Data Generation

The data generation phase creates a block of data to be loaded into the SDRAM
for each vertex. This can be used to pass parameters from the Python-described
vertices to the application code to be executed on the machine. This can make use
of the mapping information above as appropriate; for example, the routeing keys and
IP tags allocated to the vertex can be passed to ensure that the correct keys and tags
are used in transmission. The graph itself could also be used to determine which
routeing keys are to be received by the vertex, and so set up appropriate actions to
take upon receipt of these keys.

Some support for data generation and reading is provided by the tool chain both
at the Python level, where data can be generated in ‘regions’, and at the C code level,
where library functions are provided to access these regions. Other more basic data
generation is also supported which simply writes to the SDRAM directly.

Data generation can also create a statistical description of the data to be loaded
and then expand these data through the execution of a binary on the machine.
This allows less data to be created at this point potentially speeding up the data
generation and loading processes, and also allows the expansion itself to occur in
parallel on the machine.

Loading

The loading phase takes all the mapping information and data generated, along
with the application binaries associated with each machine vertex, and prepares the
physical machine for execution. This includes loading the routeing tables generated
on to each chip of the machine, loading the application data into the SDRAM of
the machine, loading the IP tags and reverse IP tags into the Ethernet chips, and
loading the application code to be executed.

Running

The running phase starts off the actual execution of the simulation and, if necessary,
monitors the execution until complete. Before execution, the tool chain wait for the
completion of the setup of any external applications that have registered to read the
mapping database. These tools are then notified that the application is about to
start, and when it is finished.

Once a run is complete, application recorded data and provenance data are
extracted from the machine. The provenance data include:

• router statistics, including dropped multicast packets;
• core-level execution statistics, including information on whether the core has

kept up with timing requirements;

94 Stacks of Software Stacks

• custom core-level statistics, these depend on the application, but might
include such things as the number of spikes sent in a neural simulation or
the number of times a certain condition has occurred.

The log files from each core can also optionally be extracted. During provenance
extraction, each vertex can analyse the data and report any anomalies. If the log files
have been extracted, these can also be analysed and any ‘error’ or ‘warning’ lines can
then be printed.

If a run is detected to have failed in some way, the tool chain will attempt to
extract information about this failure. A failure includes one of the cores going
into an error state, or if the tool chain have been run for a specific duration, if
the cores are not in a completion state after this time has passed. Log files will be
automatically extracted here and analysed as previously discussed. Any cores that
are still alive will also be asked to stop and extract any provenance data so that this
can also be analysed in an attempt to diagnose the cause of the error.

The run may be split into several sub-runs to allow for the limited SDRAM
on the machine, as shown in Figure 4.8. After each run cycle, any recorded data
are extracted from the SDRAM and stored on the host machine, after which the
recording space is flushed, and the run cycle restarted. This requires additional
support within the binary of the vertex, to allow a message to be sent to the core to
increase the run duration, and to reset the recording state. This support is provided
in the form of C code library functions, with callbacks to allow the user to perform

Figure 4.8. Running vertices with recorded data. The SDRAM remaining on each chip

after it has been allocated for other things is divided up between the vertices on that

chip. Each vertex is then checked for the number of time steps it can be run for before

filling up the SDRAM. The minimum number of time steps is taken over all chips and the

total run time is split into smaller chunks, between which the recorded data are extracted

and the buffer is cleared.

The SpiNNTools Tool Chain 95

additional tasks before resuming execution at each phase. Additionally, the tool
chain can be set up to extract and clear the core logs after each run cycle to ensure
that the logs do not overflow.

The length of each run cycle can be determined automatically by SpiNNTools.
This is done by working out the SDRAM available on each chip after data genera-
tion has taken place. This free space is then divided between the vertices on the chip
depending on how much space they require to record per time step of simulation.
To ensure that there is some space for recording, the user can specify the minimum
number of time steps to be recorded and space for this is allocated statically during
the mapping phase (noting that if this space cannot be allocated, this phase will fail
with an error).

At the end of each run phase, external applications are notified that the simu-
lation has been paused and are then notified again when the simulation resumes.
This allows them to keep in synchronisation with the rest of the application.

4.7.4 Return of Control/Extraction of Results

Once the run cycles have completed, the tool chain returns control to the executing
script. At this point, the user can interact with the graph again. This includes the
ability to extract any recorded data (see later) or make changes to the graph and/or
the parameters before resuming the simulation. The effect of any changes is detailed
below.

4.7.5 Resuming/Running Again

The user can choose to resume the execution of the simulation or to reset the sim-
ulation and start it again. At this point, the tool chain must decide which of the
aforementioned steps need to be run again. If no changes have been made to the
graph or the parameters, this can simply be considered an extension of the afore-
mentioned ability of the SpiNNTools to run the code in phases. The minimum
time calculated previously is respected again here and the tool chain will then run
in cycles of this unit of time. Note that this means that if the first run-time is shorter
than that required to fill the remaining SDRAM space (and thus only one run cycle
was required previously), this time is taken as the minimum. This is because the
buffers will have already been initialised to record for this amount of time. An
extension to this work then is to allow the buffers to be sized to use up all of the
remaining SDRAM regardless of the run time and then allow runs in units of less
than or equal to the time that uses all of this space.

If the parameters of any of the vertices or edges have been changed, the vertex
can be set up to allow the reloading of these changes. It is expected that this can
be supported where the change will not increase the size of the data, and so can

96 Stacks of Software Stacks

overwrite the existing data, such as a change in neuron state update parameters in
a neural network. Any increase in the size of the data, such as an increase in the
number of synapses in a neural network, would likely require a remapping of the
graph on to the machine as the SDRAM is likely to be packed in such a way as to
not allow the expansion of the data for a single core; it is left to the vertex to make
this decision however.

Any change to the graph, such as the addition of a vertex or edge, is likely to
require that the mapping phase take place again. This may even result in a new
machine being required should the size of the graph increase to this degree. This
will mean that all the other phases will also have to be executed again.

4.7.6 Closing

Once the user has finished simulating and extracted any data, they can tell the tool
chain that they are finished with the machine by closing it. At this point, the tool
chain resets and releases any machines that have been reserved, and so recorded
data will no longer be available. If the tool chain was told to run the network for
an indeterminate length, this would also result in the extraction and evaluation of
any provenance data at this stage.

4.7.7 Algorithms and Execution

To run each of the above phases, SpiNNTools executes a series of algorithms. The
algorithms consume various inputs that are made available by the tool chain and by
other algorithms, and produce various outputs. These inputs and outputs are not
constrained in any other way; thus, algorithms are not constrained to produce only
one output. This could be useful in, for example, mapping, where an algorithm
could be made to produce both placements and routeing tables which have been
optimised together. This is in contrast to restricting the algorithms to specific tasks,
where the output might then be less optimal, such as having a specific algorithm
for generating placement and another for generating routeing tables.

To support this form of execution, SpiNNTools implements a workflow execu-
tion system, shown in Figure 4.9. This examines the algorithms to be run in terms of
the inputs required and outputs generated to compute an execution order for the
algorithms. Input and output ‘tokens’ are also supported; these indicate implicit
inputs and outputs; for example, a token might be used to represent that data have
been loaded on to the machine, and thus, an algorithm can generate this as an
output, and another can require that this has been completed before execution.

The algorithms themselves are not discussed here in detail other than those men-
tioned above. A more detailed discussion of the mapping algorithms is discussed

The SpiNNTools Tool Chain 97

Figure 4.9. Algorithms being run by the algorithm execution engine. The executor is

provided with a list of algorithms to run, a set of input items and a set of output items

to produce. It then produces a workflow for the algorithms accounting for their inputs

required and outputs produced.

by Heathcote [94]. The tool chain also includes algorithms for routeing table
compression, which are discussed by Mundy et al. [174]. Many of the other algo-
rithms are currently simplistic in nature; these can be replaced in the future should
other algorithms be found to perform more efficiently and/or effectively.

4.7.8 Data Recording and Extraction

As mentioned previously, the tool chain supports the recording of data in such a
way as to cope with the limited nature of the SDRAM on the machine. A ‘buffer
manager’ is provided, which is used to keep track of and store the buffers of data as
they are extracted from the machine. This can additionally support the live extrac-
tion of buffers whilst the simulation is running, as shown in Figure 4.10 (Top);
cores configured with the provided library can contact the host machine when the
recording space is getting full and the tool chain can then attempt to extract the
data. In general, the bandwidth of the Ethernet of the machine is not fast enough
for this to be effective, and data tend to be lost.

The SCAMP software supports the reading of SDRAM through SDP messages.
This works through a request and response system, where each SDP message can
request the reading of up to 256 bytes of data. Additionally, to transmit the SDP
message to chips which are not connected to the Ethernet, this message must be
broken down into SpiNNaker network messages and then reconstructed on receipt;
an overview of how this process works is shown in Figure 4.10 (Middle). This

98 Stacks of Software Stacks

Figure 4.10. Data buffering and extraction. Top: The buffer manager is used to read back

recorded data during execution; when the buffer contains some data, the buffer manager

is notified and attempts to read the data, notifying the data source once this has been

done to allow the space to be reused. Middle: Data reading done using SCAMP; each

read of up to 256 bytes is further broken down into a number of request and read cycles

on the machine itself, where the packets used contain only 24 bits of data each. Bottom:

Data reading done using multicast messages; the initial request is all that is required,

after which the data are streamed using packets containing 64 bits of data. The machine

is set up so that these packets are guaranteed to arrive, so no confirmation is required.

results in speeds of around 8 Mb/s when reading from the Ethernet chip and around
2 Mb/s when reading from other chips.

To speed up the extraction of data, the tool chain includes the ability to cir-
cumvent this process, an overview of which is shown in Figure 4.10 (Bottom). To
facilitate this, firstly the machine is configured so that packets can be sent with a
guarantee that none of them are ever dropped; this can be done in this scenario
because exactly one path through the machine will be used by each read, so dead-
locks cannot occur. Next, one of the cores on each chip is loaded with an application
that can read from SDRAM and stream multicast messages to another application
loaded onto a core on the Ethernet chip, which then forms these into SDP mes-
sages to be streamed to the host along with a sequence number in each SDP packet.
The host then gathers the SDP packets and notes which sequences are missing.
The missing sequences are then requested again from the machine; this is repeated
until all sequences have been received. This has numerous advantages over the SDP
request-and-response mechanism: the SDP is only formed at the Ethernet chip, and
thus, the headers do not get transmitted across the SpiNNaker fabric; and the host
only sends in a single request for data and then a single request for each group

The SpiNNTools Tool Chain 99

of missing sequences and thus does not have to wait for each chunk of 256 bytes
between sending requests. This results in speeds of up to 40 Mb/s when reading
from any chip on the machine; there is no penalty for reading from a non-Ethernet
chip.

Once this protocol was implemented, we discovered that the Python code had
trouble keeping up with the speed at which the data were received from the
machine. We therefore implemented a version of the data reception in C++ and
Java that could interface with the Python code; the Java version is the version used
in production following comparative testing and assessment of the integration qual-
ity. This then allows the use of the Ethernet connection on multiple boards simul-
taneously, allowing the data extraction speed to scale with the number of boards
required for the simulation, up to the bandwidth of the network connected to the
host machine.

4.7.9 Live Interaction

We have previously mentioned that external applications can interact with a live
simulation, making use of the mapping database. Additional support for this inter-
action is provided by the tool chain. This support is split into live data output and
live data input.

Live data output support is performed by a vertex called the ‘Live Packet Gath-
erer’, which will package up any multicast packets it receives and send them as
UDP packets using the EIEIO protocol [205]. It is configured by adding edges
to the graph from vertices that wish to output their data in this way. This has the
advantage of being able to tap into the existing multicast streams that are already
being used to communicate within the machine; this same data can be sent out of
the machine by the simple addition of an edge to the graph, as shown in Figure 4.11.

Live data input support is provided via a vertex called the ‘Reverse IP Tag Multi-
cast Source’, which will unpack and send multicast packets using the same EIEIO
protocol. As with the Live Packet Gatherer, this vertex can then be configured by
simply adding edges from it to the vertices which are to receive the messages.

External applications that would like to make use of this support can read the
mapping database to determine the multicast keys to be received in the case of live
output or to be sent in the case of live input. Support for this interaction is provided
in SpiNNTools in both Python code and host-based C++ code.

4.7.10 Dropped Packet Re-Injection

As mentioned in Section 4.2, when a packet is dropped, an interrupt is raised
allowing a core to detect and capture the dropped packet. The tool chain includes
software that runs on the SpiNNaker machine to detect this interrupt and then

100 Stacks of Software Stacks

Figure 4.11. Live interaction with vertices. Top: To indicate that live output is required,

an edge is added from the vertex which is the source of the data to the Live Packet

Gatherer vertex in the graph. To indicate that the live input is required, an edge is added

from the Reverse IP Tag Multicast Source vertex to the target of the data in the graph.

Bottom: The effect of adding the edges to the graph is that multicast messages will be

sent from the core (or cores) of the source vertex to the core running the Live Packet

Gatherer, which will then wrap the messages in EIEIO packets and forward them to a

listening external application; and EIEIO packets received from an external application

will be decoded by the Reverse IP Tag Multicast Source core and dispatched as multicast

messages to the target core (or cores).

capture the packets that have been dropped. These are stored until a time at which
the router is no longer blocked and so can safely send the packet onwards. This
helps in those applications where the reliable transmission of packets is critical to
their operation.

There is only one register within the SpiNNaker hardware to hold a dropped
packet. If a second packet is dropped, this packet will be completely unrecoverable;
an additional flag is set in this scenario so the re-injection core can detect this and
count such occurrences. This count is reported to the user at the end of the exe-
cution so that they know that something may not be correct in their simulation
results.

4.7.11 Network Traffic Visualisation

A real-time traffic visualiser for a single 48-node SpiNN-5 board was developed to
explore the control and monitoring of the SpiNNaker system in real time [144].

Non-Neural Use Case: Conway’s Game of Life 101

The visualiser shows the system traffic status by gathering and displaying data
from the monitoring and profiling counters on the SpiNNaker chips in the system.
The visualiser can also send commands to the monitor processor via the Ethernet
connection to control and interact with the system.

4.7.12 Performance and Power Measurements

The tool chain includes support for profiling any executed code and for making an
estimate of the power usage of a simulation. Profiling support is provided through
both C and Python libraries, where the former is used to instrument code with
‘entry’ and ‘exit’ markers for code to be timed, and the latter is used to extract the
recorded timing data and calculate various statistics on the run.

To provide a reasonably accurate power estimation, the tool chain includes sup-
port for sampling the System Controller to determine whether each core is busy
or idle (waiting for an event to occur), and we include a uniformly-distributed
random delay to the sampling to avoid the worst effects of sample aliasing. As
this is run on the machine, it can achieve a higher sampling rate than a commer-
cial power-measurement tools. We then use the proportion of time spent idling,
together with the number of SpiNNaker messages sent, to compute the estimate
for how much power was actually used, scaling by the previously measured long-
term average power consumption per core and per message. This has been tested
against a commercial power measurement device on a 24-board system and appears
to provide results close to the real numbers.

4.8 Non-Neural Use Case: Conway’s Game of Life

Conway’s Game of Life [71] consists of a collection of cells which are either alive
or dead based on the state of their neighbouring cells. A diagram of an exam-
ple Machine Graph of this problem is shown in Figure 4.12. The vertices of the
graph of this application are each a cell in the game; given the state of the sur-
rounding cells, this cell can compute whether it is dead or alive in each step and
then send that to its neighbours. It similarly receives the state of the neighbours as
they are transmitted and again uses this to update its own state. The edges of the
graph are thus between adjacent cells in a grid, where each vertex is connected
bidirectionally to its eight surrounding neighbours. The game proceeds in syn-
chronous phases, where the state of cells in a given phase are all considered at the
same time.

Graphs of this form are highly scalable on the SpiNNaker system, since the com-
putation to be performed at each node is fixed, and the communication forms a
regular pattern which does not increase as the size of the board grows. Thus once

102 Stacks of Software Stacks

Figure 4.12. Conway’s Game of Life on a 5×5 grid as a Machine Graph. Every Machine

Vertex is connected to each of it’s 8 neighbours bi-directionally; this requires two Machine

Edges for each bi-directional connection. The initial state of each Vertex is either alive

(black) or dead (white).

working, it is likely that any size of game can be built, up to the size of the available
machine. This type of graph would also likely be suited to finite element analysis
[17] problems, provided that the data to be transmitted can be broken down into
SpiNNaker packets. This problem thus works well as an archetype.

It will be assumed that we have built the application code which will update
the cell based on the state of the surrounding cells. This will update the state once
per time step of the simulation based on the received state from the surrounding
cells and then send its own new state out using the given key. It can also record
its state at each time step in the simulation. The set-up of this application is as
follows:

• A Conway vertex is created which extends the machine vertex class.
• A number of Conway vertices are added to the graph to make up the board.

These are stored in such a way that finding an adjacent vertex in the grid is
easy.

• A machine edge is added between each pair of adjacent vertices, in each
direction.

• Each machine vertex generates data for the vertex, which includes the key to
be sent by that vertex and the number of time steps to run for.

• Each machine vertex can tell the tool chain how many time steps it can run
for given an amount of SDRAM available for recording.

• Each machine vertex contains code to read the state that is recorded at each
time step using the Buffer Manager.

Once the graph is built, the script starts the execution of the graph. During this
execution, the tool chain will obtain a machine description and use this with the

sPyNNaker − Software for Modelling Spiking Neural Networks 103

machine graph to work out a placement of each of the vertices and a routeing of the
edges between these placements, along with an allocated key for each of the vertices.
The software tools will then ask each vertex how many time steps it can record for
based on the available SDRAM after placement is complete, and the resources used
on each chip can therefore be determined. Each vertex will then be asked to generate
its data based on the mapping and timing information. SpiNNTools will then load
the generated data onto the machine along with the routeing tables and application
code and start the execution of the cores. It will wait an appropriate amount of time
for the cores to stop and then check their status. Assuming this is successful, control
will return to the script. This can then request the recorded states from each of the
vertices and display these data in an appropriate way.

A future version could have a Conway vertex that can have multiple cells within
each machine vertex, which would then allow for an application vertex of cells. This
would have a single large Application Vertex which would represent the whole game
board and an Application Edge for each of the 8 directions of connectivity, each
in its own Outgoing Edge Partition to indicate that different keys are required for
each of the directions. This would require that the vertex would have to cope with
the reception of multiple neighbour states, which would make the application code
itself more complex; for example, it would have to cope with multiple incoming
keys from each direction, each of which would target a different cell within the
grid.

Another possible extension to this application is to extract the state during exe-
cution and display this as the application progresses. This would require the addi-
tion of the Live Packet Gatherer vertex (described above) to the graph and an edge
from each of the Conway vertices to this vertex. The script would then indicate,
before executing the graph, that there is an external application that would like to
receive the data. This application will receive a message when the mapping database
has been written, at which point, it can set up a mapping between multicast keys
received and positions in the game board, responding when it has completed its
own setup. The tool chain will then notify this application that the simulation is
starting, and the application will then receive the same state messages as the vertices
receive, which it can use to update the display of the game board.

4.9 sPyNNaker − Software for Modelling Spiking
Neural Networks

The SpiNNaker machine is primarily designed to simulate spiking neural networks
[65]. As an example, we consider the simulation of a cortical column found within
mammalian brains, that is, a model of the neurons within a structure underneath

104 Stacks of Software Stacks

Figure 4.13. A neural network topology of a 1 mm2 area of cortical microcircuit found

within the mammalian brain. Each population of neurons is shown as a circle containing

a number, where the number indicates the number of neurons in that population.

a 1 mm2 area of the surface of the generic early sensory cortex [201]. Figure 4.13
shows the groups of neurons (Populations) in this network and the connectivity
between them (Projections). In a spiking neural network, the vertices are groups
of point neurons (as a single core can simulate more than one neuron); the com-
putation required is the update of the neuron state in response to spikes received
from connected neurons. The edges are then groups of synapses between the neu-
rons, over which spikes are transmitted. These are potentially unidirectional and
are likely to be more heterogeneous in nature than the regular grid pattern seen in
Conway’s Game of Life.

The problem of SNNs is clearly well suited to the architecture, as this is what it
was designed for, but the heterogeneity of the network, and the fact that multiple
neurons are computed on each core means that some networks will be more suited
to the platform than others; in particular, neural networks often form ‘small world’
networking topologies, where most of the connections are relatively local, but there
are a few long-distance connections. The computation required to simulate each
neuron at each time step in the simulation is generally fixed. The remaining time
is then dedicated to processing the spikes received, the number of which depends
on the how many neurons are sending spikes to the core and the activity of those
connected neurons. This is not known in advance in general, so some flexibility
in the system with respect to the amount of computation available at each node
is necessary to allow the application to work in different circumstances. Once this

sPyNNaker − Software for Modelling Spiking Neural Networks 105

is known for a given network, the system could potentially be reconfigured with
additional cores, allowing that network to be simulated in less time overall.

4.9.1 PyNN

PyNN is a Python interface to define SNN simulations for a range of simulator
back-ends [44]. It allows users to specify an SNN simulation via a Python script
once and have it executed on any or all of the supported back-ends including
NEST [76], NEURON [33] and Brian [82]. This encourages standardisation of
simulators and reproducibility of results, and increases productivity of neural net-
work modellers through code sharing and reuse, by providing a foundation for
simulator-agnostic post-processing, visualisation and data-management tools.

PyNN has continued development as part of the European Flagship Human
Brain Project (HBP) [4], and has hence been adopted as a modelling language
by a number of partners including SpiNNaker. It provides a structured interface
for the definition of neurons, synapses and input sources, giving users the flexi-
bility to build a range of network topologies. Models typically consist of single-
compartment point neurons, grouped together in populations. These populations
are then linked with projections, representing the synaptic connections between the
axons of neurons in a source population, and the dendrites of neurons in a tar-
get population. Once defined, a number of simulation controls are used to exe-
cute the model for a given time period, with the option to update parameters
and initialise state variables between runs. On simulation completion, data can be
extracted for post-processing and future reference. Neuron variables such as spike
trains, total synaptic conductances and neuron membrane potential are accessi-
ble from population objects, while synaptic weights and delays are extracted from
projections. These data can be subsequently saved or visualised using the built-in
plotting functionality.

Example PyNN commands for the generation of populations and projections are
detailed in Listing 4.1. Here the sPyNNaker version of the simulator is imported
as sim and subsequently used to construct and execute a simulation. A population
of 250 Poisson source neurons is created with label ‘poisson_source’ and provides
50 Hz input to the network for 5 s. A second population of 500 integrate and fire
neurons is then created and labelled as ‘excitatory_pop’. Excitatory connections
are made between ‘poisson_source’ and ‘excitatory_pop’ with a 20% probability of
connection, each with a weight of 0.06 nA and delays specified via a probability
distribution. Data recording is then enabled for ‘excitatory_pop’, and the simula-
tion is executed for 5 s. Finally, the ‘excitatory_pop’ spike history data are extracted
from the simulator.

106 Stacks of Software Stacks

1 i m p o r t pyNN . sp iNNaker a s s im
2 # S p i k e i n p u t
3 p o i s s o n _ s p i k e _ s o u r c e = s im . P o p u l a t i o n (2 5 0 , s im . S p i k e S o u r c e P o i s s o n (
4 r a t e =50 , d u r a t i o n =5000) , l a b e l = ’ p o i s s o n _ s o u r c e ’)
5 # Neurona l p o p u l a t i o n s
6 pop_exc = s im . P o p u l a t i o n (5 0 0 , s im . I F _ c u r r _ e x p (∗∗ c e l l _ p a r a m s _ e x c) ,
7 l a b e l = ’ e x c i t a t o r y _ p o p ’)
8 # P o i s s o n s o u r c e p r o j e c t i o n s
9 p o i s s o n _ p r o j e c t i o n _ e x c = s im . P r o j e c t i o n (p o i s s o n _ s p i k e _ s o u r c e , pop_exc ,

10 s im . F i x e d P r o b a b i l i t y C o n n e c t o r (p _ c o n n e c t = 0 . 2) ,
11 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e (w e i g h t = 0 . 0 6 , d e l a y = d e l a y _ d i s t r i b u t i o n) ,
12 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’)
13 # S p e c i f y o u t p u t r e c o r d i n g
14 pop_exc . r e c o r d (’ a l l ’)
15 # Run s i m u l a t i o n
16 s im . run (s i m t i m e =5000)
17 # E x t r a c t r e s u l t s d a t a
18 e x c _ d a t a = pop_exc . g e t _ d a t a (’ s p i k e s ’)

Listing 4.1. Example PyNN commands (a complete script is detailed in Listing 4.2).

The job of a PyNN simulator is therefore to provide a back-end-specific imple-
mentation of the PyNN language, enabling execution of simulations defined in
model scripts such as Listing 4.2.

4.9.2 sPyNNaker Implementation

The sPyNNaker Application Programming Interface (API) is comprised of two
software stacks as shown in Figure 4.14: one running on host predominantly written
in Python, the other running on the SpiNNaker machine written in C.

4.9.3 Preprocessing

At the top of the left-hand side stack in Figure 4.14, users create a PyNN script
defining an SNN. The SpiNNaker back-end is specified, which translates the SNN
into a form suitable for execution on a SpiNNaker machine. This process includes
mapping of the SNN into an application graph, partitioning into a machine graph,
generation of the required routeing information and loading of data and applica-
tions to a SpiNNaker machine. Once loading is complete, all core applications are
instructed to begin execution and run for a predefined period. On simulation com-
pletion, requested output data are extracted from the machine and made accessible
through the PyNN API.

A sample SNN is developed as a vehicle by which to describe the stages of
preprocessing. A random balanced network is defined according to the PyNN
script detailed in Listing 4.2, with the resulting network topology shown in
Figure 4.15(a). The network consists of 500 excitatory and 125 inhibitory neu-
rons, which make excitatory and inhibitory projections to one another, respectively.
Each population additionally makes recurrent connections to itself with the same
effect. Excitatory Poisson-distributed input is included to represent background

sPyNNaker − Software for Modelling Spiking Neural Networks 107

Ethernet I/FEthernet I/F

Mapping: Placement,
Partitioning, Routing,

Data generation

User interface
(Host machine)

SpiNNaker
machine

User
Application

Code

Event-driven
SpiN1API

SARK

Visualisation

Python interface to
SpiNNaker hardware

Front end
interface:

PyNN

SpiNNaker
hardware

Example apps:
LIF neuron,

delay extension,
spike source

Application event
management and
synchronisation

System
management

software

Figure 4.14. SpiNNaker software stacks. From top left anti-clockwise to top right: users

create SNN models on host via the PyNN interface; the sPyNNaker Python software stack

then translates the SNN model into a form suitable for a SpiNNaker machine and loads

the appropriate data to SpiNNaker memory via Ethernet; sPyNNaker applications, built

on the SARK system management and SpiN1API event-driven processing libraries, use

the loaded data to perform real-time simulation of neurons and synapses.

Figure 4.15. Network partitioning to fit machine resources. (a) Application graph gener-

ated from interpretation of PyNN script: circles represent PyNN populations, and arrows

represent PyNN projections. (b) Machine graph partitioned into vertices and edges to

suit machine resources: squares represent populations (or partitioned sub-populations)

of neurons which fit on a single SpiNNaker core − hence, the model described by the

machine graph in (b) requires 5 SpiNNaker cores for execution.

108 Stacks of Software Stacks

activity, while predefined spike patterns are injected via a spike source array. The
neuronal populations consist of current-based Leaky Integrate and Fire (LIF) neu-
rons, with the membrane potential of each neuron in the excitatory population
initialised via a uniform distribution bounded by the threshold and resting poten-
tials. The sPyNNaker API first interprets the PyNN defined network to construct
an application graph: a vertices and edges view of the neural network, where each
edge corresponds to a projection carrying synapses, and each vertex corresponds to
a population of neurons. This application graph is then partitioned into a machine
graph, by subdividing application vertices and edges based on available hardware
resources and requirement constraints, ultimately ensuring each resulting machine
vertex can be executed on a single SpiNNaker core. From hereon, the term vertex
will refer to a machine vertex and is synonymous with the term sub-population,
representing a group of neurons which can be simulated on a single core. An exam-
ple of this partitioning is shown in Figure 4.15, where due to its size ‘excitatory
population’ is split into two sub-partitions (A and B). Figure 4.15 also shows how
additional machine edges are created to preserve network topology between par-
titions A, B, and the other populations, and how different PyNN connectors are
treated differently during this process. For example, a PyNN OneToOneConnec-
tor connects each neuron in a population to itself. This results in both partitions
A and B having a machine edge representing their own connections, but with no
edge required to map the connector from one sub-population to the other. Con-
versely, the PyNN FixedProbabilityConnector links neurons in the source and target
populations based on connection probability and hence requires machine edges to
carry all possible synaptic connections (e.g. both between vertices A and B, and to
themselves).

Once partitioned, the machine graph is placed onto a virtual representation of
a SpiNNaker machine to facilitate allocation of chip-based resources such as cores
and memory. Known failed cores, chips and board links which compromise the
performance of a SpiNNaker machine are removed from this virtual representation,
and the machine graph is placed accordingly. Chip-specific routeing tables are then
generated facilitating transmission of spikes according to the machine edges repre-
senting the PyNN-defined projections. These tables are subsequently compressed
and loaded into router memory (as described in the previous chapter). The Python
software stack from Figure 4.14 then generates the core-specific neuron and synapse
data structures and loads them onto the SpiNNaker machine using the SpiNNTools
software. Core-specific neuron data are loaded to the appropriate DTCM, while the
associated synapse data are loaded into core-specific regions of SDRAM on the same
chip, ready for use according to Section 4.9.4. Finally, programs for execution on
application cores are loaded to ITCM, with each core executing an initialisation
function to load appropriate data structures (from SDRAM) and prepare the core

sPyNNaker − Software for Modelling Spiking Neural Networks 109

before switching to a ready state. Once all simulation cores are ready, the signal to
begin simulation is given to all cores from host, and the SNN will execute according
to the processes defined in Section 4.9.4.

4.9.4 SpiNNaker Runtime Execution

sPyNNaker applications execute SNNs via a hybrid simulation approach, using
time-driven neuron updates and event-driven synapse updates, similar to that dis-
cussed by Morrison et al. [172]. This neuron update scheme provides a flexible
framework in which to embed a range of neuron models and is of comparable
efficiency to event-based approaches when considering biologically representative
spike rates. Synapse events are handled efficiently, with no intermediate informa-
tion required to update synaptic state between pre-synaptic neuron spikes, which
are relatively infrequent on the order of 1 Hz in biological networks. Cores execut-
ing sPyNNaker applications hold neuron state variables in local DTCM, allowing
efficient access to the required data structures for the periodic time-driven neuron
update. Spike transmission between cores is via the AER model [158], with neu-
ronal action potentials communicated as multicast packets, with their key contain-
ing only the source neuron ID (in the remainder of this work, the terms: action
potential, spike and packet are synonymous). Each packet can be delivered to
multiple locations simultaneously via the SpiNNaker routeing fabric, replicating
the one-to-many connectivity of an axon. Processing of the packet is performed
by the core simulating the post-synaptic neuron, which contains functions to eval-
uate the spike-based synaptic contribution using only the packet key. Due to the
potentially large fan-in to a neuron, memory constraints prevent storage of synaptic
data in DTCM. Therefore, the source neuron ID is used to locate the associated
synaptic data stored in the relatively large but slower SDRAM memory and copy
it locally on spike arrival to facilitate evaluation of the contribution to the synaptic
state.

This section focuses on the deployment of this simulation approach within
a single core modelling a sub-population of neurons, such as ‘Excitatory A’ in
Figure 4.15(b).

Using the Low-Level Libraries

sPyNNaker applications are compiled against the aforementioned SpiNNaker
Application Runtime Kernel (SARK) [251] and the event-driven library SpiN1API
[223, 234], as shown in Figure 4.16(a).

In sPyNNaker applications modelling systems of neurons and synapses, callbacks
are registered against hardware events: timer, packet received and DMA complete;
and a software-triggered user event, as shown in Table 4.1. The associated callbacks

110 Stacks of Software Stacks

Figure 4.16. SpiNNaker realtime OS: (a) SpiN1API multi-threaded event-based operating

system: scheduler thread to queue callbacks; dispatcher thread to execute callbacks; and

FIQ thread to service interrupts from high-priority (−1) events. (b) Events and associated

callbacks for updating neuron state variables and processing incoming packets repre-

senting spikes into synaptic input. Figures reproduced with permission from [222, 223].

Table 4.1. Hardware (and single software) events, along with their registered callback and

associated priority level.

Event Callback Priority Pre-empts priority

Packet received _multicast_packet_received_callback −1 0, 1, 2

DMA complete _dma_complete_callback 0 1, 2

Timer timer_callback 2 –

User (Software) user_callback 0 1, 2

facilitate the periodic updating of neuron state and the event-based processing of
synapses when packets representing spikes arrive at a core. These events (squares)
and their callbacks (circles) are shown schematically in Figure 4.16(b). The function
timer_callback evolves the state of neurons in time and is called periodically against
timer events throughout a simulation. A packet received event triggers a _mul-

ticast_packet_received_callback, which reads the packet to extract and trans-
fer the source neuron ID to a spike queue. If no spike processing is currently
being performed, the software-triggered user event is issued and, in turn, executes
a user_callback that reads the next ID from the spike queue, locates the associ-
ated synaptic information stored in SDRAM and initiates a DMA to copy it into
DTCM for subsequent processing. Finally, the _dma_complete_callback is exe-
cuted on a DMA complete event and initiates processing of the synaptic contribu-
tion(s) to the post-synaptic neuron(s). If on completion of this processing there
are items remaining in the input spike queue, this callback initiates processing of

sPyNNaker − Software for Modelling Spiking Neural Networks 111

the next spike: meaning this collection of callbacks can be thought of as a spike
processing pipeline.

Time-Driven Neuron Update

A sPyNNaker simulation typically contains multiple cores, each simulating a dif-
ferent population of neurons (see Figure 4.15(b)). Each core updates the states of its
neurons in time via an explicit update scheme with fixed simulation timestep (1t).
When a neuron is deemed to have fired, packets are delivered to all cores that neu-
ron projects to and processed in real time by the post-synaptic core to evaluate the
resulting synaptic contribution. Therefore, while all cores operate asynchronously,
it is desirable to advance neurons on all cores approximately in parallel to march for-
ward a simulation coherently. All cores in a simulation therefore start synchronised
and register timer events with common frequency, with the period between events
defined by a fixed number of clock cycles, as shown in Figure 4.17. All cores will
therefore initiate a timer event and execute a timer_callback to advance the state
of their neurons approximately in parallel, although the system is asynchronous as
there is no hardware or software mechanism to synchronise cores. Individual update
times may vary due to any additional spike processing (see Section 4.9.4); however,
cores that have additional spikes to process between one pair of timer events can
catch up during subsequent periods of lower activity. Relative drift between boards

Figure 4.17. Time-driven updates by neuron cores simulating the network in

Figure 4.15(b): periodic timer events trigger callbacks advancing neuron states by 1t .

Cores can be out of phase due to communication of the start signal, and relative drift can

occur due to manufacturing variability between boards. Note that state update times vary

with the level of additional spike processing within a simulation timestep, however cores

which experience high levels of spike activity delaying the subsequent time_callback

can catch up during subsequent periods of lower spike activity (as shown by Core 2).

112 Stacks of Software Stacks

is possible due to slight variations in clock speed (from clock crystal manufacturing
variability); however, this effect is small relative to simulation times [235]. Small
variations placing core updates slightly out of phase can also occur due to the way
the ‘start’ signal is communicated, particularly on larger machines; however, again
this effect is negligible. A consequence of this update scheme is that generated spikes
are constrained to the time grid (multiples of the simulation timestep 1t). It also
enforces a finite minimum simulation spike transit time between neurons of1t , as
input cannot be guaranteed to arrive in the current timestep before a neuron has
been updated. From the hardware perspective, the maximum packet transit time
for the million core machine is ≤25µs (assuming 200 ns per router [235], and a
maximum path length of 128).

A design goal of the SpiNNaker platform is to achieve real-time simulation of
SNNs, where ‘real time’ is defined as when the time taken to simulate a network
matches the amount of time the network has modelled. Therefore, an SNN with a
simulation timestep of 1t = 1 ms requires the period of timer events to be set at
200,000 clock cycles (where at 200 MHz each clock cycle has a period of 5 ns – see
Section 2.2). This causes 1 ms of simulation to be executed in 1 ms, meaning the
solution will keep up with wall-clock time, enabling advantageous performance,
and interaction with systems operating on the same clock (such as robots, humans
and animals). In practice, real-time execution is not always possible, and therefore,
users are free to reduce the value of 1t in special cases and also adjust the num-
ber of clock cycles between timer events. For example, if a neuron model requires
1t = 0.1 ms for accuracy, it is a common practice to let the period between timer
events remain at 200,000 clock cycles, to ensure there is sufficient processing time
to update the neurons and process incoming spikes [217]. This enforces a slowdown
factor of 10 relative to real time.

From the perspective of an individual core, each neuron is initialised with user-
defined parameters at time t0 (supplied via a PyNN script). All state variables are
then updated one timestep at a time up to the simulation end time tend . The num-
ber of required updates and hence timer events is calculated based on tend and the
user-defined simulation timestep1t (which is fixed for the duration of simulation).
Each call to timer_callback advances all the neurons on a core by 1t according
to Algorithm S1 in [208], which is shown schematically on the left-hand side of
Figure 4.18. First the synapse state for all neurons on the core is updated accord-
ing to the model shaping rule, and any new input this timestep is added from the
synaptic input buffers (discussed below). Interrupts are disabled during this update
to prevent concurrent access to the buffers from spike processing operations. The
states of all neurons on the core are then updated sequentially. An individual neuron
state at the current time Ni,t is accessed in memory, and if the neuron is not refrac-
tory, its state is updated according to the model characterising its sub-threshold

sPyNNaker − Software for Modelling Spiking Neural Networks 113

Figure 4.18. Left: update flow advancing state of neuron Ni by 1t . Centre: circular synap-

tic input buffers accumulate scaled input at different locations based on synaptic delay

(buffers are rotated one slot at the end of every timestep). Right top: synaptic input

buffer values are converted to fixed-point format and scaled before adding to Ni . Right

bottom: decoding of synaptic word into circular synaptic buffer input.

dynamics (see examples in Section 4.9.5). If it is judged to have emitted a spike,
the refractory dynamics are initiated and the router is instructed to send a multi-
cast packet to the network. Finally, all requested neuron variables are recorded as
belonging to this new timestep (t+1t) and stored in core memory for subsequent
extraction by the SpiNNTools software – interrupts are disabled during this process
to prevent concurrent access to recording datastructures.

Synaptic input buffers (Figure 4.18 centre) are used to accumulate all synap-
tic input on a given receptor type, removing the computational cost of managing
state variables for individual synapses (as developed by Morrison et al. [172]). Each
buffer is constructed from a number of ‘slots’, where each slot represents input at
a future simulation timestep. All input designated to arrive at a particular time is
accumulated in the appropriate slot, constraining synapse models to those whose
contributions can be summed linearly. A pointer is maintained to the input asso-
ciated with the proceeding timestep (t + 1t). Each neuron update consumes the
input addressed by this pointer and then advances it forward one slot (effectively
rotating the buffer). When the pointer reaches the last slot, it cycles back to the first,
meaning these slots continuously represent input over the next d timesteps, where
d is the number of slots. By default the value of d is set via a 4-bit unsigned inte-
ger, enabling representation of delays up to 16 timesteps (however, Section 4.9.6
contains information on extending this delay). In the default sPyNNaker imple-
mentation, a synaptic input buffer is created per neuron, per receptor type, and is
a collection of 16 slots each constructed from unsigned 16-bit integers. The use of

114 Stacks of Software Stacks

an integer representation reduces buffer size in DTCM and also the size of synaptic
weights in SDRAM, relative to using standard 32-bit fixed-point accum type. How-
ever, it requires conversion to accum type for use in the neuron model calculations –
as shown in Figure 4.18. This conversion is performed via a union and left-shift, the
size of which represents a trade-off between headroom and precision. An example
shift of 6 is shown, causing the smallest bit of the synaptic input buffer to represent
2−9
= 1.953125 × 10−3, and the largest 27

= 128, in the accum type of the
synapse state. Under extreme conditions, a buffer slot will saturate from concur-
rent spike activity, meaning the shift size should be increased. However, the shift is
also intrinsic to the weight representation and affects precision, as all weights must
be scaled by 2(15−shi f t) before being written as integers to the synaptic matrices
discussed in Section 4.9.4. For example, in Figure 4.18, a weight of 1.15 nA was
converted to 589 on host during generation of synaptic data, but is returned as
1.150390625 nA when used during simulation (with a shift of 6). The shift value
is currently calculated by the sPyNNaker toolchain to provide a balance between
handling large weights, high fan-in and/or pre-synaptic firing rates, and maintain-
ing precision – see the work by Albada et al. [3] where the theory leading to a usable
closed-form probabilistic headroom mechanism is described in Equation 1.

Receiving a Spike

A _multicast_packet_received_callback is triggered by a packet received event,
raised when a multicast packet arrives at the core. This callback is assigned highest
priority (−1) and hence makes use of the FIQ thread and pre-empts all other core
processing (see Figure 4.16(a)). This callback cannot be queued, and therefore,
to prevent traffic backing up on the network, this callback is designed to execute
quickly, and it simply extracts the source neuron ID (from the 32-bit key) and stores
it in an input spike buffer for subsequent processing. Note that by default this buffer
is 256 entries long, enabling queuing of 256 spikes simultaneously. The callback
then checks for activity in the spike processing pipeline and registers a user event if
inactive. Pseudo code for this callback is made available by Rhodes et al. [208].

Activation of the Spike Processing Pipeline

A user_callback callback is triggered by the user event registered in a Section 4.9.4
and kick-starts the spike processing pipeline. The callback locates in SDRAM the
synaptic data associated with the spike ID and initiates its DMA transfer to DTCM
for subsequent processing. Three core-specific data structures are used in this pro-
cess: the master population table, address list and synaptic matrix. Use of these data
structures is shown schematically in Figure 4.19, from the perspective of the core
simulating the Excitatory A population in Figure 4.15(b), when receiving a spike
from the Excitatory A population. The master population table is a lightweight list

sPyNNaker − Software for Modelling Spiking Neural Networks 115

Figure 4.19. Data structures for processing incoming spikes: Master population table,

address list, and synaptic matrix, are shown from the perspective of the core simulat-

ing the Excitatory A population in Figure 4.15(b). The path in bold represents that taken

when a packet is received by Excitatory A, originating from itself, and hence two projec-

tions must be processed.

taking a masked source neuron ID as the key by which a source vertex can be
identified. Each row pertains to a single source vertex and consists of: 32-bit key;
32-bit mask; 16-bit start location of the first row in the address list pertaining to this
source vertex; and a 16-bit value defining the number of rows, where each row in the
address list represents a PyNN projection. When searching this table, the key from
the incoming packet is masked using each entry-specific mask before comparing
to the entry key. This masks off the individual neuron ID bits and enables source
vertices to simulate different numbers of neurons. The entry keys are masked on
host before loading for efficiency and are structured to prevent overlap after mask-
ing and facilitate binary searching. The structure of an address list row consists of:
a single header bit detailing whether the synaptic matrix associated with this pro-
jection is located in DTCM or SDRAM; 32-bit memory address indicating the
first row of the synaptic matrix; and an 8-bit value detailing the synaptic matrix
row length (i.e. the maximum number of post-synaptic neurons connected to by

116 Stacks of Software Stacks

a pre-synaptic neuron in a particular projection). Note that synaptic matrix rows
are indexed by source neuron ID and that all rows are padded to the maximum
row length to facilitate retrieval, including empty rows for pre-synaptic neurons
not connected to neurons on this core. The row data structure is covered in detail
in Section 4.9.4.

This callback therefore takes from the input spike buffer the next spike ID to
process and uses it in a binary search of the master population table to locate the
address list regions capturing the projections carrying the spike to this vertex. The
SDRAM location and size specified by each row are then used in sequential pro-
cessing of the projections. For the case shown in Figure 4.19, searching the master
population table yields two rows in the address list, which in turn define the loca-
tion of the corresponding synaptic matrices in SDRAM. Each synaptic matrix is
indexed according to pre-synaptic neuron ID, enabling location of the appropriate
row to copy to core DTCM for processing of each spike. Details of this row are
then passed to the DMA controller to begin the data transfer, marking the end of
the callback. This allows the core to return to processing other callbacks, hiding the
DMA transfer as shown for ‘Spike 1’ in Figure 4.21.

Synapse processing

On completion of the DMA in Section 4.9.4, a DMA complete event triggers a
_dma_complete_callback, initiating processing of the synaptic row. As described
previously, each row pertains to synapses made, within a single PyNN projection,
between a single pre-synaptic neuron and multiple post-synaptic neurons. At the
highest level, a synaptic row is an array of synaptic words, where each word is
defined as a 32-bit unsigned integer. The row is split into three designated regions to
enable identification of static and plastic synapses (connections capable of changing
their weight at runtime). The row regions contain dynamic plastic data, constant
fixed plastic data and static data. Three header fields are also included, detailing
the size of each region and enabling easy navigation of the row. A schematic break-
down of the synaptic row structure is detailed in Figure 4.20. Note that because
a PyNN projection cannot be both static and plastic simultaneously, a single row
contains only either static or plastic data. Plastic data are intentionally segregated
into dynamic and fixed regions to facilitate processing. While all plastic data must
be copied locally to evaluate synaptic contributions to a neuron, only the dynamic
region – that is, that changing at runtime – requires updating for use when process-
ing subsequent spikes. Keeping this dynamic data in a separate block facilitates writ-
ing back to the synaptic matrix with a single DMA, and writing back less data helps
compensate for reduced DMA write bandwidth (relative to read – see Section 2.2).

The static region occupies the lower portion of the synaptic row and is itself
an array of synaptic words, where each word corresponds to a synaptic connection

sPyNNaker − Software for Modelling Spiking Neural Networks 117

Padding
(3-bit)

Delay
(4-bit)

Type
(1-bit)

Size of
Plastic
Region

Size of
Static

Region

Plastic Region
(array of 32-bit integers)

Fixed Plastic Region
(array of 32-bit integers)

Static Region
(array of 32-bit integers)

Synapse
Struct 1
(16-bit)

Synapse
Struct 2
(16-bit)

Synapse
Struct 3
(16-bit)

Prev. Spike Time
(32-bit)

Prev.
Trace

(16-bit)

Plastic
Fixed 1
(16-bit)

Plastic
Fixed 2
(16-bit)

Plastic
Fixed 3
(16-bit)

Neuron ID
(8-bit)

Weight
(16-bit)

Padding
(3-bit)

Delay
(4-bit)

Type
(1-bit)

Neuron ID
(8-bit)

Static Synapse 1
(32-bit)

Fixed
Plastic
Size

Synaptic Row (array of 32-bit integers)

Fixed Plastic Half-Word

Static Synaptic Word

Presynaptic Event History
(64-bit)

Synapse Structures
(Typically 32-bit array of

double-packed 16-bit weights)

Static Synapse 2
(32-bit)

Static Synapse 3
(32-bit)

Static Synapse 4
(32-bit)

Empty
(16-bit)

Empty
(16-bit)

Empty
(16-bit)

Figure 4.20. Synaptic row structure with breakdown of substructures for both static and

plastic synapses.

timer_callback
_multicast_packet_
received_callback

_dma_complete
_callback Timer Event t + Δt

Spike 4 DMA Complete

DMA Request
Latency

DMA Controller

user_callback

Core Activity

Neuron Update

Spike 1 Spike 2

Sleep

Spike 3

Hardware Event & Context Switching

Spike 4

Packet Received

Timer Event !

Figure 4.21. Interaction of callbacks shown over the time period between two timer

events. Four spike events are processed representing the scenarios: receiving a packet

while processing a timer event; receiving a packet while the core is idling; and receiving

a packet while the spike processing pipeline is active. Note that a lighter colour shade

indicates a suspension of a callback, which is resumed on completion of higher priority

tasks.

118 Stacks of Software Stacks

between the row’s pre-synaptic neuron and a single post-synaptic neuron. As shown
in Figure 4.20, each 32-bit data structure is split such that the top 16 bits repre-
sent the weight, while the lower 16 bits typically split: bottom 8 bits to specify
the post-synaptic neuron ID; 1 bit to specify the synapse type (excitatory 0, or
inhibitory 1); 4 bits to specify synaptic delay; leaving 3 bits for padding (useful
for model customisation, e.g., adding additional receptors types). Data defining
plastic synapses are divided across the dynamic and fixed regions. Fixed plastic
data are defined by a 16-bit unsigned integer and match the structure of the
lower half of a static synapse (see lower half of Figure 4.20). These 16-bit synap-
tic half-words enable double-packing inside the 32-bit array of the synaptic row,
meaning an empty half-slot will be apparent if the row targets an odd number of
synapses. The dynamic plastic region contains a header defining the pre-synaptic
event history, followed by a series of synapse structures capturing the weight of each
synapse. Note that for typical plasticity models, this defaults to the same 16-
bit weight describing static synapses; however, synapse structure can be extended
to include additional parameters (in multiples of 16 bits) if required by a given
plasticity rule.

A task of the _dma_complete_callback is therefore to convert the synaptic
row into individual post-synaptic neuron input. The callback processes the row
headers to ascertain whether it contains static or plastic data, adjusts synapses
according to a given plasticity rule, and then loops over each synaptic word and
extracts its neuronal contribution – pseudo code for this callback is detailed in
Algorithm S4 of [208]. An example of this process for a single static synaptic
word is shown in the lower right of Figure 4.18, where a synaptic word of
[0000001001001101 0001010100001100] leads to a contribution of 589 to slot
10 of the inhibitory synaptic input buffer for neuron N12.

Callback Interaction

The callbacks described above define how a sPyNNaker application responds to
hardware events and updates an SNN simulation. The interaction of these events is
a complex process, with the potential to impact the ability of a SpiNNaker machine
to perform real-time execution. Figure 4.21 covers the time between two timer
events and shows interaction of spike processing and neuron update callbacks for
four scenarios detailed by the arrival of spikes 1–4. The first timer event initiates
processing of the neuron update; however, after completion of approximately one-
third of the update, the core receives Spike 1, interrupting the timer_callback

and triggering execution of a _multicast_packet_received_callback, which in
turn raises a user event, initiating DMA transfer of the appropriate synaptic infor-
mation. On completion of the callback, the core returns to the timer_callback,
with the DMA transfer occurring in parallel. On completion of the DMA, a

sPyNNaker − Software for Modelling Spiking Neural Networks 119

_dma_complete_callback is initiated, which processes the transferred synaptic
information into neuronal input. The core then returns to the timer_callback,
which continues to completion. The core is idle when it receives Spike 2; therefore,
processing of the spike begins immediately, and the subsequent user event and hence
DMA request is initiated. While waiting for the data to transfer, Spike 3 is received,
and the associated _multicast_packet_received_callback is processed. This time,
due to the active spike processing pipeline, no user event is raised, and instead, the
DMA for Spike 3 is initiated at the beginning of the _dma_complete_callback

triggered by Spike 2. Whilst processing this callback, Spike 4 is received, and
the associated _multicast_packet_received_callback interrupts the core to place
the packet key in the input spike queue. This queue entry is eventually pro-
cessed at the beginning of the _dma_complete_callback for Spike 3, demon-
strating the spike processing pipeline in action. This also shows the benefit of
having two hardware ‘threads’ working in parallel, as the core is utilised com-
pletely, and the DMA transfer is hidden behind the _dma_complete_callback,
when the pipeline is active. Finally, after an idle period (where the proces-
sor is put to sleep in a low energy state), the next timer event is issued at
time t +1t .

From Figure 4.21, it is seen that core processing is dependent on SNN activ-
ity. When targeting real-time execution (Section 4.9.4), it is important to con-
sider extreme circumstances and how they will affect both the core and global
simulation. For example, it is clear from Figure 4.21 that when a core receives
spikes, it can delay completion of the timer_callback due to the assigned call-
back priorities (as shown in Figure 4.17). This is a design choice, as it helps
maximise core utilisation by hiding DMA transfers behind the timer_callback

when the spike processing pipeline is inactive. However, in the extreme case, spike
processing will delay the completion of the callback beyond the issuing of the
next timer event. While the core can potentially catch up this lost time, this sce-
nario has the potential to delay the neuron update beyond a single timer event
and ultimately cause any spike packets emitted from this core to be received
and processed at the wrong time by the rest of the network. To guard against
this, sPyNNaker applications report any occurrences of an overrun, where a
timer_callback is not complete before the next timer event is raised and also the
maximum number of timer events that a single timer_callback overruns. Simi-
lar metrics are also reported when the input spike queue overflows (exceeds 256
entries) and when the synaptic input buffers saturate. Together these metrics pro-
vide a window into the ability of a core to handle the required processing within a
simulation.

Another important performance consideration when responding to spike pack-
ets using prioritised events is the time taken to switch between the associated

120 Stacks of Software Stacks

callbacks. Events are displayed in Figure 4.21 by solid black lines, the width of
which represents the time taken to switch context and begin execution of the call-
back. The timer_callback takes longest to respond due to queuing of events with
priority > 0, while the _multicast_packet_received_callback is quickest due to
its priority of−1 and use of the FIQ thread. Other chip-level factors can also influ-
ence execution, such as SDRAM contention with applications running on adjacent
cores. As DMAs are processed in serial bursts, if multiple simultaneous requests are
received by the SDRAM controller, there may be latency in beginning the DMA
for some cores and a reduced rate of transfer (see Section S1.2 of [208] for further
information).

4.9.5 Neural Modelling

At the heart of a sPyNNaker application is the solution of a series of mathemat-
ical models governing neural dynamics. It is these models which determine how
incoming spikes affect a neuron and when a neuron itself reaches threshold. While
the preceding section described the underlying event-based operating system facil-
itating simulation and interaction of neurons, this section focuses on the solution
of equations governing neural state and how they are structured in software.

Software Structure

PyNN defines a number of standard cell models, such as the LIF neuron and
the Izhikevich neuron. Implementations of these standard models are included in
sPyNNaker; however, the API is also designed to support users wishing to extend
this core functionality and implement neuron models of their own. To facilitate this
extension, the model framework is defined in an object-oriented fashion, through
the use of C code on the SpiNNaker machine. This modular approach provides
structure and aids code reuse between different models (e.g. sharing of a synaptic
plasticity rule between different neuron models). A neuron model is built from the
following components:

– synapse_type, defining how synapse state evolves between pre-synaptic spikes
and how contributions from new spikes are added to the model. A fundamen-
tal requirement is that multiple synaptic inputs can be summed and shaped
linearly, such as the α-kernel [49].

– neuron_model, implementing the sub-threshold update scheme and refractory
dynamics.

– input_type, governing the process of converting synaptic input into neu-
ron input current. Examples include current-based and conductance-based
formulations [45].

sPyNNaker − Software for Modelling Spiking Neural Networks 121

– threshold_type, defining a system against which a neuron membrane potential
is compared to adjudge whether a neuron has emitted a spike.

– additional_input_type, offering a flexible framework to model intrinsic cur-
rents dependent on the instantaneous membrane potential and potentially
responding discontinuously on neuron firing (such as the Ca2+-activated
K+ current described by Liu and Wang [149]).

The individual model components each produces a subset of the neuron and
synapse dynamics and is therefore the entry point for a user looking to deploy
a custom neuron model.4 In keeping with the aforementioned software stacks in
Figure 4.14, interfaces to each component are written in both Python and C. A sin-
gle instance of each component is collected via a C header file and compiled against
the underlying operating system described in Section 4.9.4 to generate a runtime
application. Python classes for each component facilitate user interaction with each
part of the model, enabling setting of parameter values and initial conditions from
a PyNN SNN script.

The runtime execution framework calls each component as part of the
timer_callback, as detailed in Algorithm S1 in [208] and shown schematically in
Figure 4.18. First the synaptic state is advanced forward in time by a single simu-
lation timestep, using the functions defined by the synapse_type component. Core
interrupts are disabled during this process to prevent concurrent access of the synap-
tic input buffers from a _dma_complete_callback. Interrupts are re-enabled when
all the state related to the synapses for all receptor types for all neurons on a core
have been updated. Each neuron then has its state advanced by1t . The input_type
component is called first, converting the updated synaptic state into neuron input
current. This includes separate excitatory and inhibitory components, with core
implementations capable of handling both current- and conductance-based formu-
lations. The additional_input component is then evaluated to calculate the level of
any intrinsic currents. The synaptic and intrinsic currents, together with any back-
ground current, are then supplied to the neuron_model component which subse-
quently marches forward the neuron state by1t . The neuron membrane potential
is now passed to the threshold_type component which tests whether the neuron
has fired. If the neuron is above threshold, a number of actions are performed:
a refractory counter begins to instigate any refractory period; the additional_input
is notified of the spike to allow updating of appropriate state variables; and finally,
the core is instructed to send a multicast packet to the router with the neuron ID
as key.

4. A detailed guide to this process can be found at: http://spinnakermanchester.github.io/workshops/seventh.
html

http://spinnakermanchester.github.io/workshops/seventh.html
http://spinnakermanchester.github.io/workshops/seventh.html

122 Stacks of Software Stacks

Leaky Integrate and Fire Neuron

The sPyNNaker implementation of a current-based LIF neuron is described by the
hybrid system in Equations 4.1 and 4.2. The sub-threshold dynamics are governed
according to Equation 4.1, where V is the membrane potential, I is the input
current (combining synaptic, intrinsic and background input), Rm is the membrane
resistance, τm is the membrane leak time constant and El is the membrane leak
(resting) potential.

dV
dt
= −

V − (El + Rm I (t))
τm

if V > Vθ , V = Vreset (4.1)

d Isyn

dt
= −

Isyn

τsyn
+ δ(t − t j) (4.2)

If V exceeds the threshold level Vθ , the neuron is reported to have spiked and V
is set to the reset potential Vreset for the refractory period duration tr . Synaptic
currents Isyn are modelled according to Equation 4.2, where τsyn is the synaptic
time constant (independent value for each receptor type), and the delta function
represents addition of a step change in input from the weight of an incoming spike.

The sPyNNaker implementation embeds Equation 4.2 in a synapse type com-
ponent, providing mechanisms to update the input current both between spikes
(i.e. when the synaptic input buffer contribution is zero) and on spike arrival.
Exact integration is used to update the synapse state during the periodic neuron
update, with step changes made from synaptic input buffer contributions accord-
ing to Equation 4.3.

It+1 = It e−
1t/τsyn +6 jwi jδ(t − t j) (4.3)

The constant factor e−1t/τsyn is pre-calculated before loading to the SpiNNaker
machine to avoid evaluation at runtime, as both the divide and exponential opera-
tions are relatively expensive on the ARM968 (≈100 clock cycles each). A neuron
model component captures the neuron state update mechanism, which solves Equa-
tion 4.1 via exponential integration [212] and assuming the change in current over
the timestep is small [45], yielding the update function in Equation 4.4.

Vt+1 = El + Rm It+1t − e−
1t
τm (El + Rm It+1t − Vt) (4.4)

To compensate for this assumption, wi j is decayed before adding to the synapse
to ensure the total charge input to a neuron matches the exact solution [3]. Static
thresholding defined via the threshold type compares the instantaneous membrane
potential to the threshold level Vθ .

sPyNNaker − Software for Modelling Spiking Neural Networks 123

Izhikevich Neuron

The Izhikevich neuron model [116] allows reproduction of biologically observed
neuronal characteristics such as spiking and bursting. Its dynamics follow a type of
‘quadratic integrate and fire’ model, as detailed in Equation 4.5

dv
dt
= 0.04v2

+ 5v + 140− u + I (t) (4.5)

du
dt
= a(bv − u)

if v ≥ Vθ , then

{
v← c

u ← u + d
(4.6)

where v and u are dimensionless variables representing the membrane potential
and a recovery variable, respectively. Dimensionless parameters a, b, c and d are
used to tune the model dynamics, and I represents combined background, intrinsic
and synaptic currents. If v exceeds a threshold Vθ , v and u are reset according to
Equation 4.6.

The sPyNNaker implementation of this model uses the same synapse type,
current-based input type and static threshold type components as the aforementioned
LIF implementation. However, updating the neuron state and hence solving the
system defined by Equation 4.5 requires numerical integration. A range of solvers
were explored with fixed-point data type by Hopkins and Furber [101], with the
RK-2 midpoint preferred as a trade-off between speed and accuracy. The resulting
explicit update scheme is detailed in Equation 4.7.

θ = 140+ It+1t − ut α = θ + (5+ 0.04vt)vt

η =
αh
2
+ vt β =

ah
2
(bvt − ut)

vt+1t = vt + h(θ − β + (0.04η + 5)η)

ut+1t = ut + ah(bη − β − ut) (4.7)

While it is hard to recognise the original equations in this form, refactoring of
the update scheme and algebraic manipulation leads to several improvements in
the implementation. The use of intermediate variables not only enables compiler
optimisations improving speed and code size but also helps prevent over/underflow
of the accum data type during intermediate calculations [101].

124 Stacks of Software Stacks

4.9.6 Auxiliary Application Code

While neuron-simulating applications capture the core operations of an SNN,
several additional sPyNNaker applications are required to generate network input
and facilitate network operation. These single-core applications are built follow-
ing similar principles to those defined in Section 4.9.4, responding via the same
event-based operating system to send and receive packets and interact with neuron
cores. They are embedded in the machine graph during network preprocessing and
loaded onto a SpiNNaker machine together with configuration data.

Spike Input Generation

Generating spikes is an integral part of SNN simulations. It enables modelling of
network response to specific patterns of spikes and input representing adjacent brain
regions or background noise. The sPyNNaker API includes two applications for
spike generation: spike source array and Poisson spike source. These applications are
built from compiled C and require a single SpiNNaker core per instance. They
follow timer events in parallel (but asynchronously) with neuron-simulating cores
and send multicast packets representing spikes as discussed previously. These appli-
cations do not receive spikes and hence have their functionality encoded entirely
in callbacks registered against timer events. As with all sPyNNaker applications, a
corresponding Python class enables construction of a spike generator in a PyNN
script and allows configuration data to be specified and subsequently loaded to a
SpiNNaker machine.

The spike source array application contains a population of neuron-like units
which emit spikes at specific times (see Listing 4.2). The times and keys to emit are
stored in SDRAM and only copied into local DTCM when required during execu-
tion. The buffer of times/keys is pre-loaded up to memory limits and can be replen-
ished during execution by sending requests to the host, although this is limited by
the bandwidth of the on-board Ethernet. Callbacks issued on timer events (corre-
sponding to timestep updates on neuron cores) then send packets to the router at
the prescribed times. If multiple ‘neurons’ are registered to emit spike packets over
the same timestep, a small random delay is added between sending of the packets
to reduce pressure on the router.

The Poisson spike source application emits packets according to a Poisson distri-
bution about a given frequency. A population of neuron-like units is specified, each
of which can be assigned an individual mean firing rate (see Listing 4.2). At run-
time, periodic timer events trigger a callback at every simulation timestep1t , which
assesses whether the core should send a packet to the router representing a spike.
A distinction is made between slow and fast Poisson spike sources based on whether
they emit fewer>1 spike for any1t . For fast spike sources, the number of spikes to

sPyNNaker − Software for Modelling Spiking Neural Networks 125

send between timer events is calculated [130], and the corresponding packets sent
are interspersed with random delays. This random spacing reduces the chance of
synchronised spike arrival at post-synaptic cores, easing pressure on both the source
and target routers. For slow sources, after each spike, an inter-spike interval is evalu-
ated in multiples of1t , which is then counted down between sending packets. For
fast spike sources, the post-synaptic core is likely to retrieve from SDRAM the same
pieces of synaptic matrix many times during a simulation. Therefore, to remove the
overhead of the DMA, a mechanism is included to store the synaptic matrices from
fast spike sources in DTCM.

Simulating Extended Synaptic Delays

While there is a mechanism in the synaptic row to account for delays of up to
161t , it can be necessary to prescribe longer delays (particularly when1 is small).
To account for this case, an application called a delay extension is created [3], run-
ning on an adjacent core. Packets representing spikes exhibiting a delay≥161t are
routed to the core running this application, which subsequently sends new spikes
targeting the post-synaptic core after a sufficient portion of the delay has elapsed
such that any remaining delay can be handled within the synaptic row.

Two data structures are used to manage delay handling: a ‘delay stage configura-
tion’ is generated during preprocessing and captures the size of delay associated with
each pre-synaptic neuron; and a ‘spike counter’ registers the time and pre-synaptic
neuron of incoming spikes. Two callbacks are used in the delay extension, registered
against packet received and timer hardware events. On packet arrival, the first call-
back extracts the pre-synaptic neuron ID to an input spike buffer, similar to the
process described in Section 4.9.4. The second callback is executed on timer events
occurring in parallel (but asynchronously) with those on neuron processing cores.
The callback processes any spikes received since the previous timer event, taking
entries from the input spike buffer and using them to update the spike counting
data structure to register the incoming spikes against multiples of the number of
synaptic input buffer slots on the corresponding post-synaptic core. There are typ-
ically 16 such slots, where in this context a collection of 16 slots is referred to as
a ‘delay stage’. A second data structure captures how many delay stages each spike
should be held for before being released to the post-synaptic core. Therefore, using
these two data structures, it is possible to assess the incoming spikes to calculate
the corresponding outgoing spike times and hence schedule the necessary spikes
for distribution to the network.

While this application solves the problem of simulating extended delays, it can-
not do so indefinitely and an effective new upper limit of 1441t is enforced due to
DTCM constraints. It should also be noted that this mechanism introduces addi-
tional overhead to the system: an extra core is required to run the application, and

126 Stacks of Software Stacks

two packets are now required to transmit a spike. The post-synaptic core also per-
forms additional processing during look-up of the source vertex in the master popu-
lation table. An additional row must be included to identify spikes travelling direct
from the pre-synaptic core and also those sent from each individual delay stage of
the delay extension. This increased master population table size can be costly to search
and detrimental for real-time performance [207].

4.10 Software Engineering for Future Systems

As this text is being written, the SpiNNaker2 system, described in Chapter 8, is
being developed. This architecture has clear implications on the software. To this
end, it makes sense to develop the software to require as few changes as possible
to make it compatible with this new system. The hierarchical modular structure
of the software supports this well; for example, the mapping algorithms operate
on a machine object, which can be simply updated when the structure of the new
system is known (or a second version can be created and algorithms can operate
on whichever system is in use). Similarly, the communications layer will require
updating to match the communications used by the new system. However, the
concepts will be similar to the higher levels, and so they will be able to stay the
same, for example, the communications layer will have to support ‘executing of
a binary’ and ‘loading of data’ but the signature of these functions can be made
the same for both the old and the new system, avoiding the need to change the
high-level libraries.

The other part of the system that would require changes is within the C code,
where the features of the new system will need to be made accessible through the
low-level libraries. Again, concepts that exist in both systems, such as the ability to
run in an event-based manner, will map directly to the hardware, and so high-level
code will not have to change (other than requiring recompilation of course).

All this means that minimal code changes will be required to make the code
compatible with both old and new (and possibly even newer) systems. This makes
the code somewhat future proof in so much as any software can be and require
minimal maintenance as the hardware systems are developed.

Full Example Code Listing 127

4.11 Full Example Code Listing

1 i m p o r t pyNN . sp iNNaker a s s im
2

3 # I n i t i a l i s e s i m u l a t o r
4 s im . s e t u p (t i m e s t e p =1)
5

6 # S p i k e i n p u t
7 p o i s s o n _ s p i k e _ s o u r c e = s im . P o p u l a t i o n (2 5 0 , s im . S p i k e S o u r c e P o i s s o n (
8 r a t e =50 , d u r a t i o n =5000) , l a b e l = ’ p o i s s o n _ s o u r c e ’)
9

10 s p i k e _ s o u r c e _ a r r a y = s im . P o p u l a t i o n (2 5 0 , s im . S p i k e S o u r c e A r r a y ,
11 { ’ s p i k e _ t i m e s ’ : [1 0 0 0] } ,
12 l a b e l = ’ s p i k e _ s o u r c e ’)
13

14

15 # Neuron P a r a m e t e r s
16 c e l l _ p a r a m s _ e x c = {
17 ’ tau_m ’ : 2 0 . 0 , ’ cm ’ : 1 . 0 , ’ v _ r e s t ’ : −65.0 , ’ v _ r e s e t ’ : −65.0 ,
18 ’ v _ t h r e s h ’ : −50.0 , ’ t a u _ s y n _ E ’ : 5 . 0 , ’ t a u _ s y n _ I ’ : 1 5 . 0 ,
19 ’ t a u _ r e f r a c ’ : 0 . 3 , ’ i _ o f f s e t ’ : 0 }
20

21 c e l l _ p a r a m s _ i n h = {
22 ’ tau_m ’ : 2 0 . 0 , ’ cm ’ : 1 . 0 , ’ v _ r e s t ’ : −65.0 , ’ v _ r e s e t ’ : −65.0 ,
23 ’ v _ t h r e s h ’ : −50.0 , ’ t a u _ s y n _ E ’ : 5 . 0 , ’ t a u _ s y n _ I ’ : 5 . 0 ,
24 ’ t a u _ r e f r a c ’ : 0 . 3 , ’ i _ o f f s e t ’ : 0 }
25

26 # Neurona l p o p u l a t i o n s
27 pop_exc = s im . P o p u l a t i o n (5 0 0 , s im . I F _ c u r r _ e x p (∗∗ c e l l _ p a r a m s _ e x c) ,
28 l a b e l = ’ e x c i t a t o r y _ p o p ’)
29

30 pop_inh = s im . P o p u l a t i o n (1 2 5 , s im . I F _ c u r r _ e x p (∗∗ c e l l _ p a r a m s _ i n h) ,
31 l a b e l = ’ i n h i b i t o r y _ p o p ’)
32

33

34 # G e n e r a t e random d i s t r i b u t i o n s from which t o i n i t i a l i s e p a r a m e t e r s
35 rng = s im . NumpyRNG(s e e d =98766987 , p a r a l l e l _ s a f e = True)
36

37 # I n i t i a l i s e membrane p o t e n t i a l s u n i f o r m l y b e t w e e n t h r e s h o l d and r e s t i n g
38 pop_exc . s e t (v = s im . R a n d o m D i s t r i b u t i o n (’ u n i f o r m ’ ,
39 [c e l l _ p a r a m s _ e x c [’ v _ r e s e t ’] ,
40 c e l l _ p a r a m s _ e x c [’ v _ t h r e s h ’]] ,
41 rng = rng))
42

43 # D i s t r i b u t i o n from which t o a l l o c a t e d e l a y s
44 d e l a y _ d i s t r i b u t i o n = s im . R a n d o m D i s t r i b u t i o n (’ u n i f o r m ’ , [1 , 1 0] , rng = rng)
45

46 # S p i k e i n p u t p r o j e c t i o n s
47 s p i k e _ s o u r c e _ p r o j e c t i o n = s im . P r o j e c t i o n (s p i k e _ s o u r c e _ a r r a y , pop_exc ,
48 s im . F i x e d P r o b a b i l i t y C o n n e c t o r (p _ c o n n e c t = 0 . 0 5) ,
49 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e (w e i g h t = 0 . 1 , d e l a y = d e l a y _ d i s t r i b u t i o n) ,
50 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’)
51

52 # P o i s s o n s o u r c e p r o j e c t i o n s
53 p o i s s o n _ p r o j e c t i o n _ e x c = s im . P r o j e c t i o n (p o i s s o n _ s p i k e _ s o u r c e , pop_exc ,
54 s im . F i x e d P r o b a b i l i t y C o n n e c t o r (p _ c o n n e c t = 0 . 2) ,
55 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e (w e i g h t = 0 . 0 6 , d e l a y = d e l a y _ d i s t r i b u t i o n) ,
56 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’)
57 p o i s s o n _ p r o j e c t i o n _ i n h = s im . P r o j e c t i o n (p o i s s o n _ s p i k e _ s o u r c e , pop_inh ,
58 s im . F i x e d P r o b a b i l i t y C o n n e c t o r (p _ c o n n e c t = 0 . 2) ,
59 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e (w e i g h t = 0 . 0 3 , d e l a y = d e l a y _ d i s t r i b u t i o n) ,
60 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’)

128 Stacks of Software Stacks

61 # R e c u r r e n t p r o j e c t i o n s
62 e x c _ e x c _ r e c = s im . P r o j e c t i o n (pop_exc , pop_exc ,
63 s im . F i x e d P r o b a b i l i t y C o n n e c t o r (p _ c o n n e c t = 0 . 1) ,
64 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e (w e i g h t = 0 . 0 3 , d e l a y = d e l a y _ d i s t r i b u t i o n) ,
65 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’)
66 e x c _ e x c _ o n e _ t o _ o n e _ r e c = s im . P r o j e c t i o n (pop_exc , pop_exc ,
67 s im . OneToOneConnector () ,
68 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e (w e i g h t = 0 . 0 3 , d e l a y = d e l a y _ d i s t r i b u t i o n) ,
69 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’)
70 i n h _ i n h _ r e c = s im . P r o j e c t i o n (pop_inh , pop_inh ,
71 s im . F i x e d P r o b a b i l i t y C o n n e c t o r (p _ c o n n e c t = 0 . 1) ,
72 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e (w e i g h t = 0 . 0 3 , d e l a y = d e l a y _ d i s t r i b u t i o n) ,
73 r e c e p t o r _ t y p e = ’ i n h i b i t o r y ’)
74

75 # P r o j e c t i o n s b e t w e e n n e u r o n a l p o p u l a t i o n s
76 e x c _ t o _ i n h = s im . P r o j e c t i o n (pop_exc , pop_inh ,
77 s im . F i x e d P r o b a b i l i t y C o n n e c t o r (p _ c o n n e c t = 0 . 2) ,
78 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e (w e i g h t = 0 . 0 6 , d e l a y = d e l a y _ d i s t r i b u t i o n) ,
79 r e c e p t o r _ t y p e = ’ e x c i t a t o r y ’)
80 i n h _ t o _ e x c = s im . P r o j e c t i o n (pop_inh , pop_exc ,
81 s im . F i x e d P r o b a b i l i t y C o n n e c t o r (p _ c o n n e c t = 0 . 2) ,
82 s y n a p s e _ t y p e = s im . S t a t i c S y n a p s e (w e i g h t = 0 . 0 6 , d e l a y = d e l a y _ d i s t r i b u t i o n) ,
83 r e c e p t o r _ t y p e = ’ i n h i b i t o r y ’)
84

85

86 # S p e c i f y o u t p u t r e c o r d i n g
87 pop_exc . r e c o r d (’ a l l ’)
88 pop_inh . r e c o r d (’ s p i k e s ’)
89

90

91 # Run s i m u l a t i o n
92 s im . run (s i m t i m e =5000)
93

94

95 # E x t r a c t r e s u l t s d a t a
96 e x c _ d a t a = pop_exc . g e t _ d a t a (’ s p i k e s ’)
97 i n h _ d a t a = pop_inh . g e t _ d a t a (’ s p i k e s ’)
98

99

100 # E x i t s i m u l a t i o n
101 s im . end ()

Listing 4.2. An example for PyNN commands.

