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The Terminator’s an infiltration unit. Part man, part machine.
Underneath, its a hyperalloy combat chassis,
microprocessor-controlled, fully armored.

Very tough ... But outside, it’s living human tissue.

— THE TERMINATOR

The SpiNNaker machine is flexible in terms of the applications that it supports. In
part, this flexibility is given by the comparative ease of use of the substrate, namely
the ARM processors. A varied range of applications is also encouraged by the soft-
ware stack maturity discussed in Chapter 4. Using these high-level collections of
software, a variety of plasticity mechanisms have been implemented to support var-
ious learning applications.

The following sections will cover a wide range of topics. We begin by first
presenting an art exhibit and SpiNNaker’s place in it — we start light. Then, we
present a suite of approaches to engineer SNNs for a variety of computer vision
tasks. Progressing through this chapter we present a large-scale model of a cochlea
(SpiNNak-Ear [120]). This application is only possible on SpiNNaker because
of general-purpose nature of the CPUs and the software written to support such
generic, graph-based applications. From sensing to decision making, we present a
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130 Applications — Doing Stuff on the Machine

model of a Basal Ganglia (BG), of course, simulated on SpiNNaker. Finally, we use
SNN's as the method of solving constraint satisfaction problems.

5.1 Robot Art Project

We are a lab full of engineers. Art was as far away from our collective future pro-
jections for the platform as possible. So, once we were approached by Tove Kjell-
mark, a Swedish artist, with the idea for an exhibit involving humanoid robots and
SpiNNaker, we immediately considered the issues and hurdles of such an attempt,
not the least that of time and expectation management. The exhibition at the
Manchester Art Gallery, named “The Imitation Game’ in honour of Alan Turing
and his eponymous test, was to include several robotic pieces with the common
theme of seeming intelligent in particular ways. The robotic entities present in the
gallery would surely not pass Turing’s test in any meaningful way, but that was
not the plan anyway. To school children, laypeople and scientists alike, this was
an artist’s view at imitating life at the behavioural, albeit limited, level. At a basic
level, these pieces would hint at the existence of something more than just Artifi-
cial Intelligence (Al). Tove Kjellmark would call it ‘another nature’, that is to say an
elimination of the artificial boundaries between the technological, the mechanical
and the natural. We would rather call it a conceptual step in a more important area
of research, that of Artificial General Intelligence (AGI), as opposed to the narrow
Al, nowadays present everywhere, the ‘autistic savants’ that tell you what objects
you are looking at, what movies to watch next and what music to listen based on
your listening habits.

Our involvement focused on the piece “Talk’ (pictured in Figure 5.1) that fea-
tured two robotic torsos sat cross-legged on comfortable chairs discussing a dream.
They look at each other, gesture while talking, speak fluently and with appropriate
cadence, sighs and pauses. If a human dares approach, they stop their conversation,
turn their head to face the intruder to chastise them and wave them away.' Thus,
SpiNNaker’s task was to control the arms of the robots to perform realistic-looking
arm movements in three regimes: idling, gesturing and silencing.

The focus of this undergraduate project was successful in revealing that
SpiNNaker is capable of real-life, albeit impractical, applications. The individually
packaged SpiNNaker boards would not be turned off for weeks at a time and would
operate without flaw for over 7 hours a day for approximately 4 months in conjunc-
tion with the physical robots. As expected, maintenance visits to the Gallery would
generally revolve around the robots or indeed the host computers, rather than any

1. Robotic art gallery video presentation https://youtu.be/GaqgkyAIRBg
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Figure 5.1. Display in ‘The Imitation Game’ exhibition at the Manchester Art Gallery,
2016, celebrating Manchester becoming European City of Science. Artist: Tove Kjellmark;
School of Computer Science, Manchester: Petrut Bogdan, Prof. Steve Furber, Dr. Dave
Lester, Michael Hopkins; Manchester Art Gallery Exhibitions Intern: Mathew Bancroft;
Mechatronics Division, KTH, Stockholm: Joel Schréder, Jacob Johansson, Daniel Ohlsson,
Elif Toy, Erik Bergdahl, Freddi Haataja, Anders Astrém, Victor Karlsson, Sandra Aidanpaa;

Furhat Robotics: Gabriel Skantze, Jonas Beskow, Dr Per Johansson.

SpiNNaker intervention. It would seem that SpiNNaker would indeed be suited to
neurorobotics applications [209], as discussed previously.

5.11 Building Brains with Nengo and Some Bits and Pieces

Two small PCs were used to control the two robots: the primary PC completely con-
trols one of the robots and the arms of the other, while the secondary PC operates
only the head of the other robot. The two distributed instances of the Furhat con-
troller communicate through the network at key moments advancing the scripted
dialogue. The primary PC is also responsible for communicating with the glo-
rified distance sensor embodied in a Microsoft Kinect sensor, as well as the two
stand-alone SpiNNaker boards. Both PCs control the actuators in the robotic arms
using classical control theory; some translation is required between SpiNNaker’s
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Figure 5.2. Hardware organisation diagram.

communication and these closed-loop control systems. Figure 5.2 reveals the flow
of information involved in this project.

The previous chapter explained how SpiNNaker is usually controlled, using
PyNN as a high-level network description language, viewing individual neurons
as the main units of computation. Instead, here the Neural ENGineering Objects
(Nengo) simulator bunches neurons together in ensembles (populations) and relies
on their concerted activity to perform computation [53].

The way Nengo is built supports the implementation of a proportional-integral-
derivative (PID) controller using a spiking neural substrate. A PID controller is a
control loop feedback mechanism that continuously computes the error between
the desired trajectory and the current position. The controller attempts to min-
imise the error as described by a weighted sum of a proportional, an integral and a
derivative term. The proportional term accounts for moving towards the target at
a rate dictated by the distance from it (cross track error). The derivative term con-
siders the angle of the current trajectory compared to that of the desired trajectory
(also called the cross track error rate), while the integral term is used to correct for
accumulated errors that lead to a steady state error caused by, for example, external
factors.

Consider the example of a driverless car positioned in a controlled environment
with a trajectory precomputed for it to follow down the track in order to avoid some
static obstacles. The goal is to try to follow the trajectory as closely as possible, so
effects such as oscillations are not desired. In addition, the researchers at the facility
have decided to see what would happen if at some point on the path they place
a rock or pothole. They hope that the system would realise that it is drifting off
course and apply a correcting turn. Figure 5.3 shows what this would look like in
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Figure 5.3. An example of trajectory following. In a real example, the trajectory would

potentially not change so abruptly.
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Figure 5.4. (a) A 15-second window of the operation of the control system running at the

Manchester Art Gallery. This time period sees the robots going through all of the defined
actions: gesture (the robot is talking), silence (the robot stopped talking to make a silenc-
ing gesture directed at an approaching visitor) and idle (the robot is not talking but lis-
tening to the other robot talk). (b) Robot poses corresponding to the Nengo simulation.

The poses correspond to times 2, 4, 8 and 14.

Nengo. This is very similar to what can be done when controlling robot arm motors
and servos.

Figure 5.4 shows the operation of one of the arms on a robot over a timespan
of 15 seconds. During this time, the robot is issued three different commands in
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Figure 5.5. Gesturing movement of the robots computed as a function of time f(t) =

% * (sin(ﬁ) —cos(2 x1)).

succession: gesture, silence and idle. While gesturing, the target position of each
joint is given by a predetermined ‘zero’ or base position (hand-picked values that
look natural in the physical exhibit) subtracted from a sinusoidal signal, namely the
one in Figure 5.5. The incoming signal is transformed using a linear transformation
for each joint individually to create a human like gesturing motion. Since the robots
each has two arms, there is a dot product-based network inhibiting the arm that is
not intended for use. Such arm selection is possible by creating a couple of prede-
fined orthonormal vectors that represent the left and right directions. Based on the
input direction vector for the system, a dot product is computed between it and
the two previously mentioned bases so as to determine which direction is closest
based on the angle. In the particular case where the vector is not significantly closer
to any of the targets, the system accomplishes the desired action using both arms.
The result of adding this level of control and inhibition is that the robot can now
move one arm, or the other, or even both, thus allowing for more human mimetic
behaviour.

When issued the action ‘silence’, the performing robot raises both lower arms
into the air, in a defensive manner, signalled by external feedback from the head
assembly, which turns to face the visitor and asks them to be silent. The action is
achieved by inhibiting the neurons’ spiking activity in the ensemble representing
the zero’ position and the ‘sound’ signal using the inhibiting output from an incor-
porated Basal Ganglia (BG) model. Analogously, idling is achieved by inhibiting the
sound and silencing signals.

Because the exhibition took place in Manchester, no one else was around to
maintain these robots, and we still had to experiment with realistic movement, we
interacted with them for most of their stay at the Manchester Art Gallery. Most of
these interactions took place during typical work hours, meaning that the gallery
was usually populated by school children. It was surreal seeing the children interact
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with the robots. They weren't allowed to touch them of course, although that did
not prevent them from trying. All of this assumes that they managed to enter the
room: the usual first reaction to seeing them was fear. Once I had talked to the chil-
dren’s teachers and assured them that it was safe in the room, they would flock inside
to witness the two humanoids in discussion. There was always someone watching
from the doorway, too apprehensive to approach these mechanical beings, which
were, essentially, only superficially intelligent. Nobody knew what they were talking
about, but they were all fascinated with their ‘silencing’ phases as these provided the
most audience interaction. These groups rarely stopped to read the plaque describ-
ing the exhibit, but surely this was a success in and of itself: SpiNNaker managed
to work flawlessly for the entire duration of the exhibit; the same could not be said
about the actuators and 3D-printed parts which had a much harder time.

5.2 Computer Vision with Spiking Neurons

Computational emulation of biological vision has been of interest for decades
[249]. State-of-the-art computer vision systems use traditional image sensors for
their inputs that differ greatly from those present in biology. In particular, ganglion
cells in the mammalian retina emit signals when sufficient change in light intensity
is sensed. Biology has successfully made use of event-based computation in vision
(and other senses), and we should aim for the same in machine vision.

5.21 Feature Extraction

An important step in computer vision is to extract features from the input image. In
traditional computer vision, this usually involves applying operations (e.g. convo-
lutions and integrals) to the whole image, regardless of activity in the world, leading
to high computational and bandwidth demands. Event-based computation dimin-
ishes these demands by processing only regions of the image that have changed.

Gabor-like Detection

To extract features, we can take inspiration from biological vision; Gabor-like fil-
ters are an example of a common abstraction which have an origin in biology and
have been used in traditional computer vision [97]. These can be implemented
using spiking neurons whose (immediate) receptive field is distance dependent
and synapse weights are proportional to the ones computed by the Gabor func-
tion. Methods for transforming weight values have been proposed in the litera-
ture [185, 190] and in Chapter 7, we discuss a different approach.
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Figure 5.6 (b—g) shows the result of filtering a Modified NIST (MNIST) digit
(Figure 5.6(a)). The Gabor filters were generated using the following equations:

72 2.,72 /
O(x,y;4,0,y,0,7) =exp (—w) cos (Zﬂx— + w),

202 A
(5.1)
x' =xcosO + ysin6 , (5.2)
y = —xsinf + y cosl , (5.3)

where 4 and y are the wavelength and phase of the sinusoidal component, respec-
tively; @ is the orientation of the resulting stripes, ¢ is the standard deviation of the
Gaussian component; and y is the spatial aspect ratio. Parameters for the generation
of Gabor kernels are presented in Table 5.1.

(a)
(b) (c) (d)
(e) 6] (g

Figure 5.6. Results of Gabor-like feature extraction. (a) shows the input image converted

to a spike train and later filtered using six Gabor kernels. (b-g) show the responses of

each filtering population projected to the input space.

Table 5.1. Gabor filter parameters.

Width Sampling o A ~ % (7]

5 1 2 6 05 11 [0,30,060,120,150]
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Figure 5.7. Connectivity motif for the blob-detecting network.

Blob Detector

Retinal connectivity has also been used as inspiration for key-point extrac-
tion [151]. A retina-inspired network can be used to convert visual input into a
multi-scale representation from which blob-like features can be extracted [103]. In
this three-layered network (Figure 5.7), the middle layer samples the input layer
with receptive fields whose weights are computed using a Gaussian function. Dif-
ferent middle layer ‘classes’ sample the input with different parameters for their
input kernels (i.e. width, ). Each neuron in the middle layer drives a neuron in the
output and, additionally, an inhibitory ‘interneuron’. The purpose of the inhibitory
neurons is to induce competition between the output layer neurons, reducing activ-
ity and pushing the output representation towards orthogonality. All neurons in the
output layer compete to represent the input, and the extent to which the inhibitory
neurons influence their neighbours is proportional to the cross-correlation of their
input image kernels. This competition results in centre-surround receptive fields,
as observed in biology.

As an example we took the same input image as in the Gabor filtering (Fig-
ure 5.6(a)), and its spike representation was processed by this blob-detection net-
work using three different Gaussian kernel sizes. Figure 5.8 shows the output of the
network; we can observe that the greatest activity is present in the mid-resolution
class (Figure 5.8(b)) as it is a better fit to the input activity. The high-resolution
class (Figure 5.8(a)) shows a behaviour similar to edge detection, typical of centre-
surround filtering. Finally, as the receptive field for the low-resolution class is not a
good fit for the input, there is little activity observed.
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Figure 5.8. Results of blob-detection network. (a) High-, (b) middle- and (c) low-

resolution neuron classes.
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Figure 5.9. Motion sensing circuit. (a) Connectivity of the motion detection circuit using
two different neurotransmitters (green-solid and blue-dashed). (b) Delayed lines allow

spikes to reach the neuron body at the same time.

Motion Detection

Objects in the world are often moving, and since time is embedded in SNN simu-
lations, we believe it is important to detect motion. A spiking version of a motion
detector [103] was developed based on the connectivity of Starburst Amacrine Cells
(SAC) [24, 58] and the Reichardt detector [24]. The motion detector network is
illustrated in Figure 5.9(a); the principle of operation is composed of two factors:
(i) delayed connections and (ii) the combination of two neurotransmitters. Delays
are proportional to distance allowing incoming spikes triggered at different times
and distances to arrive at (about) the same time (Figure 5.9(b)).

The two neurotransmitters allow activity from different regions of the input to
be present at the correct time at the detector neuron (Figure 5.10(a) and 5.10(b));
one of the neurotransmitters decays at a slow rate, opening a window for the other
transmitter (whose decay rate is high) to reach the detector.

We tested the circuit using a bouncing ball simulation; the ball moves in a 64 x 64
pixel window and when it bounces, it does so with a randomly selected speed in
a range of 1 to 2 pixels. Figure 5.11 shows the outputs of easterly and westerly
motion detection as red-dashed and green-solid lines, respectively. Ball motion
is indicated by blue dots in the plot: the ball moved towards the north-east for
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Figure 5.10. Interaction of transmitters in the motion sensing circuit. (a) When neuro-

transmitters (blue and green lines) do not reach the neuron within a temporal window,
they will not induce sufficient current for the neuron to spike. (b) In contrast, when they

reach the neuron in the right sequence, they will produce an activation.
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Figure 5.11. Output of the motion sensing circuit.

about 500 ms, then it bounced off a corner and moved in a south-westerly direc-
tion until ~1250 ms; finally, it took off to the north-east again. In the first part (0 to
~1250 ms) of the experiment, detection is near perfect although there are moments
when the detectors fail to sense motion. In the last section (after ~1250 ms), there
are multiple false-positive detections which can be diminished by lateral competi-
tion of different directions. This circuit can detect apparent motion with an accu-
racy of 70%. A similar detector, though with learned connectivity, is described in
Section 7.5.5.

5.3 SpiNNak-Ear — On-line Sound Processing

The SpiNNak-Ear system is a fully scaled biological model of the early mammalian
auditory pathway: converting a sound stimulus into a spiking representation spread
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across a number of parallel auditory nerve fibres [119]. This system takes advantage
of the generic digital processing elements on a SpiNNaker machine, enabling a
Digital Signal Processing (DSP) application to be distributed across its massively
parallel architecture. With the degree of parallel processing available for a SpiNNak-
Ear implementation, one is able to generate a simulation of an ear to a biologically
realistic scale (30,000 human cochlea auditory nerve fibres) in real time.

5.3.1 Motivation for a Neuromorphic Implementation

A conventional computer simulation can be carried out for large-scale auditory
models — albeit with an inherent compromise in processing time due to serialised
computation. However, an additional motivation for implementing a parallel simu-
lation of the ear on SpiNNaker is the capability of handling a highly parallel inter-
face between a model of the ear and the rest of the brain running on the same
machine. SNNs that model later stages of the auditory pathway and cortical regions
of the brain can be specified using the pre-existing SpiNNaker PyNN interface.
Using a SpiNNak-Ear model that is already distributed across the same SpiNNaker
network allows interfacing the auditory periphery with subsequent SNNs without
incurring a data-flow bottleneck penalty.

5.3.2 The Early Auditory Pathway

The early auditory pathway, illustrated in Figure 5.12, begins with a sound pressure
wave travelling into the outer ear and eventually displacing the Tympanic Mem-
brane (TM) that separates the outer and middle ear. Inside the middle ear, the TM

auditory
HF, nerve fibres (~30,000)

action
potentials

membrane

\\\Ener hair cell, 7

Figure 5.12. An uncoiled cochlea (right) with parallel auditory nerve fibres innervating
single IHCs along the cochlea. The spiking activity due to two stimulus frequency com-
ponents — High Frequency (HF) and Low Frequency (LF) — can be seen in the corre-

sponding auditory nerve fibres.
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connects to the cochlea via three ossicle bones to continue (and amplify) this dis-
placement into the inner ear cochlea. The cochlea is a coiled, liquid-filled organ
that converts the TM displacement into a series of travelling waves along its dis-
tance, from base to apex. The frequency components of the sound stimulus dictate
the location along the cochlea that will experience the most displacement along its
Basilar Membrane (BM). High frequencies are absorbed at the basal regions and
progressively lower frequencies reach the apical regions of the cochlea. The cochlea
is lined with many motion sensitive cells, known as Inner Hair Cells (IHCs), that
detect the localised displacements of the BM. The IHC:s act as the ‘biological trans-
ducers’ in the ear, converting physical sound-produced displacements into a corre-
sponding spike code signal on the auditory nerve.

The modelling of every section of the cochlea’s BM and the nearby IHCs can be
described as being ‘embarrassingly parallel’, where the processing of each individual
node (a Dual Resonance Non-Linear [DRNL] + IHC models) does not depend on
any other neighbouring nodes. Therefore, we can model the processing of specific
regions of the cochlea in a concurrent fashion.

5.3.3 Model Algorithm and Distribution

The algorithm used in SpiNNak-Ear is based on the MATLAB Auditory Periphery
(MAP) model [159]. It separates the digital modelling of the ear into three sepa-
rate modules representing ascending biological regions. The first module models
the outer and middle ear (OME) using infinite impulse response filters. The sec-
ond module mimics the sound stimulus frequency separation that occurs along the
length of the cochlea using a filter bank of DRNL filters [150]. The final module
represents the processing of the IHC and Auditory Nerve (AN) (IHC/AN) and is
based on the algorithm described by Sumner ez a/. [245].

The complete SpiNNak-Ear module distribution is outlined in Figure 5.13; it
consists of a single OME model instance and many DRNL and IHC/ANs instances
depending on the number of cochlea frequency channels specified by the user.
The data transfer between the OME model and connected DRNL models is per-
formed using the SpiNNaker multicast-with-payload messaging method. This effi-
cient routeing mechanism allows for the output of the OME model to be sent, a
32-bit sample at a time, as a multicast packet payload to all DRNL models located
anywhere on the SpiNNaker machine. These incoming samples are stored in a local-
to-core memory buffer and are batch processed when the designated processing seg-
ment size (96 samples) has been received. Following DRNL processing, the output
96 x 64-bit word segments are stored in a shared on-chip SDRAM memory cir-
cular buffer. This allows an efficient block data transfer between a ‘parent’ DRNL
model and its ‘child’ IHC/AN models (always located on the same chip) necessary



142 Applications — Doing Stuff on the Machine

. Auditory
Basilar nerve

Stapes membrane .
-imm' = -

X 1 core

X 3,000 -

>
cores
SpiNNaker
Spiking Neural Network
X 15,000 . ~ 100 neurons per core
cores
s

Figure 5.13. A schematic for the human full-scale early auditory path model distribution
on SpiNNaker. The total number of cores for this simulation is 18,001 spanning across
1,500 SpiNNaker chips.

for real-time performance. The shared memory communication link that triggers a
‘read from shared buffer’ event in a child IHC/AN model is achieved using a mul-
ticast packet transmission from the parent DRNL model once it has processed a
segment. Figure 5.14(a) illustrates these two data communication methods used in
the full model system.

In the full system, the OME model application is triggered by the real-time input
stimulus, after which the subsequent DRNL and IHC/AN models in the software
pipeline are free to run asynchronously (event-driven) until the AN output stage.
In a given simulation, to confirm that all model instances have initialised or have
finished processing, we use ‘core-ready’ or ‘simulation-complete’ acknowledgement
signals fed back through the network of all connected model instances to the parent
OME model instance to ensure all cores are ready to process and data have been
successfully recorded within the given time limits.

5.3.4 Results

The output from SpiNNak-Ear simulation is compared with conventional
computer-based simulation results from the MAP model to ensure no significant
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pipeline processing structure used to achieve real-time performance.

numerical errors have occurred from computing the model algorithm on different
simulation hardware. The outputs from both implementations are then compared
with physiological experimental results to confirm the model’s similarities to the
biological processes it emulates.

In experimental neuroscience, the response from a stochastic auditory nerve fibre
to an audio stimulus is measured over many repeated experiments and the subse-
quent recordings are often displayed in a Peri Stimulus Time Histogram (PSTH).
The results, shown in Figure 5.15, show the time varying AN spike rates across 1 ms
windows to a 6.9 kHz sinusoidal 68 dBSPL stimulus, first in Figure 5.15(a) from
physiological data gathered by Westerman and Smith [265] and then from both
model implementations in Figure 5.15(b). These results show both implementa-
tions produce a biologically similar response consisting of pre-stimulus firings of
approximately 50 spikes/s, followed by a peak response at stimulus onset at around
800 spikes/s, decaying to an adapted rate in the region of 170 spikes/s. Finally at
stimulus removal, rates significantly drop during an offset period before returning
to spontaneous firing of approximately 50 spikes/s.

Figure 5.16 illustrates the energy consumed by MAP and SpiNNak-Ear imple-
mentations across the full range of model channels tested. Energy consumption has
been calculated by multiplying the complete processing time by the total power rat-
ing of the hardware used (CPU at 84 W, single SpiNNaker chip at 1 W). Here we
show that both implementations incur an increase in total energy consumed — but
for different reasons. The MAP implementation running on a single, fixed power
CPU uses more energy when the number of channels is increased due to the increase
in serialised processing time. The neuromorphic hardware experiences an increase
in energy consumed due to the increasing size of the machine used (number of
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Figure 5.15. PSTH responses to 352 repetitions of a 400 ms 6.9 kHz 68 dBSPL stim-

ulus from experimental data obtained by Westerman and Smith [265] of an HSR
AN fibre in a gerbil (a) and the same experiment repeated for MAP and SpiNNaker

implementations (b).

chips) with an increase in channels. The rate of increase in energy consumed due
to number of channels on neuromorphic hardware is lower than the conventional
serial CPU approach. This effect illustrates the basic philosophy that underlies the
functionality of SpiNNaker (and biological) processing systems: complex compu-
tation on a modest energy budget, performed by dividing overall task workload
across a parallel network of simple and power-efficient processing nodes.

5.3.5 Future Developments

A goal for the future of SpiNNak-Ear is to enable simulations with a live stream
audio signal input. This has the potential to provide the user with an interac-
tive visual representation of various regions of the brain to their current sound
environment. Such a facility of ‘in-the-loop’ experimentation may assist in gaining
further understanding of the important features of biological neural networks.
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Figure 5.16. Average energy consumption from processing a 0.5 s sound sample from
2 to 3,000 channels on both MAP and SpiNNaker implementations. The MAP model is
executed on a desktop computer (Intel Core™ i5-4590 CPU @ 3.3 GHz 22 nm technology)
and SpiNNaker on a range of different sized SpiNNaker machines ranging from 1to 1,500

chips (130 nm technology) scaled by the number of channels in a simulation.

The SpiNNak-Ear implementation on the SpiNNaker platform can be used in
future investigation into the importance of the descending projections that feature
between stages of the auditory pathway. It has been shown that descending projec-
tions may be providing useful feedback modulation to the incoming sound repre-
sentation, ‘tuning’ the representations of learnt salient stimuli [252] and producing
stimulus-specific adaptation in sensory neurons [153]. Therefore, if a research goal
is to gain a full understanding of the auditory system, one must model it com-
pletely with multiple feedback projections. Implementing such connectivity across
a large complex system in a computer simulation becomes an increasing burden
on system communication resources. On the SpiNNaker hardware architecture,
using the novel one-to-many multicast message routeing mechanism, additional
descending projections can be integrated into simulations without incurring large
overheads and with the ability to simulate real-time feedback to the user.

5.4 Basal Ganglia Circuit Abstraction

Here we present a biologically plausible and scalable model of the Basal Ganglia
(BG) circuit, designed to run on the SpiNNaker machine [217]. It is based on
the Gurney—Prescott—Redgrave model of the BG [84, 85]. The BG is a set of
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subcortical nuclei that are evolutionarily very old and appear in all vertebrates,
enabling them to make decisions and take subsequent actions; obviously, there-
fore, computational modelling of the BG has been pursued by researchers with
an interest in robotics [202]. The information on which the decision needs to be
made, that is, the environmental circumstance, constitutes the input to the BG
and is available via the thalamus and cortex. Output from the BG is the specific
action that is decided upon, referred to as ‘action-selection’, and is relayed to the
motor pathway for execution via the thalamus, cortex and other subcortical struc-
tures. The objective of our work on SpiNNaker is to build a ‘basic building block’
towards development of automated decision-making tools in real time.

A single neuro-computational unit in our BG model is simulated with a
conductance-based Izhikevich neuron model. A columnar structure of the BG cir-
cuitry is shown in Figure 5.17; this forms the basic building block for our scalable
framework and is thought to be a single ‘channel’ of action selection. The striatum
forms the main input structure of the BG and receives excitatory glutamatergic
synapses from both the cortex and the thalamus. The substantia nigra pars reticu-
lata (SNr) forms the output structure of the BG and projects inhibitory efferents
to the ventral thalamus and brainstem reticular formation.

The single-channel BG model is first parameterised on SpiNNaker to set the base
firing rates for all model cell populations, informed by prior work by Humphries
et al. [110]. Next, to simulate action selection by competing inputs, the model is

Thalamic / Cortical Input '\;
I
i
i
!
L BG
r Single
i Channel
i Structure
i
i
i
|
"
Output to — Excitatory
thalamus/brainstem —— Inhibitory

Figure 5.17. Single-channel action selection architecture.
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Figure 5.18. Demonstration of action selection in a 3-channel BG model on (a) SpiNNaker
and (b) SpineML. All three channels have a 3 Hz Poisson input. At 3 seconds, a 15 Hz
Poisson input is provided to channel 1 (blue), when the firing rate of the node drops,
demonstrating disinhibition and therefore action selection by the node. At 6 seconds,
channel 2 is provided with a 25 Hz input, and therefore, channel 2 now gets to select an

action, as it is the overall winner with the lowest firing rate.

scaled up to three channels and tested with two competing inputs in the presence of
a noisy background stimulus. Results are summarised in Figure 5.18(a). An input
stimulus that is larger than the others is always the ‘winner’, indicated by a relative
drop in the firing rate of the SNr population (representing the BG model output)
in the competing channel. The reduced firing rate of the inhibitory SNr population
implies a reduced inhibition of the thalamic/brainstem cells, which are the recip-
ients of the BG output as mentioned above. This in turn means that the ‘action’
that is solicited by a relatively larger (‘competing’) input is now ‘decided’ by the
BG circuit to be ‘selected and acted upor’, indicated by disinhibition of the target
outputs. The model is tested with a competing input of 15 Hz in the presence of a
noisy background input of 3 Hz. This is further confirmed by ‘selection’” of a larger
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input of 25 Hz provided in the presence of both 15 Hz and 3 Hz inputs. On both
occasions, the largest input wins.

It is worth mentioning here that dopamine neurotransmitter-receptor levels are
fundamental to facilitating decision-making and action selection by the BG. Here,
the base parameters are tuned to simulate neutral dopamine levels; studying model
dynamics with varying levels of dopamine will be carried out in future work.

To verify the model results simulated on SpiNNaker, the model is mapped to
SpineML, an XML-based platform representing model attributes as ‘components’
and executing the models with SpineML_2_BRAHMS, a bespoke simulator that
converts the SpineML model into machine code and runs it on a conventional com-
puter. We aimed for the BG model implementation on SpineML to have the exact
same network topology and neuron attributes as the SpiNNaker version and there-
fore retained all model connectivities and parameter values used in the latter. Model
results on SpineML show qualitative similarity with those on SpiNNaker in terms of
base firing rates of the single-channel BG model cell populations. Implementation
of the three-channel model on SpineML, following the exact same implementation
procedures as on SpiNNaker, demonstrates action selection by a larger input and is
shown in Figure 5.18(b). Comparing Figures 5.18(a) and 5.18(b) shows an agree-
ment between the functional and qualitative behaviour of the models simulated
on SpiNNaker and SpineML. We believe that our comparative study will provide
a basic framework for mapping SpiNNaker-based models to SpineML, as well as
for performance benchmarking of SpiNNaker with conventional computers during
neuronal simulation.

The single-channel BG model consists of 2.68 x 103 neurons and ~0.68 x 10°
synapses (estimated from projection probabilities). While each processor within a
SpiNNaker chip is capable of simulating an upper limit of 256 neurons [217],
memory requirements of the neuron model and synaptic connectivity for certain
applications may cause this number to be reduced. In the current work, sPyNNaker
maps the single-channel BG model onto 32 cores distributed across 2 SpiNNaker
chips, residing on a single 48-chip SpiNNaker Board. Power consumption of the
single-channel BG model executing on a 48-node board is measured using in-house
Raspberry-Pi-based power measurement equipment [244]. Figure 5.19(a) shows
that the single-channel model execution uses 2800 mW. We have also observed
that the model execution time is not affected by scaling up to three channels and is
consistent at 100 s real time corresponding to a simulation time of 10s. As power
consumed during pre- and post-processing are negligible compared to that during
model execution, we kept the post-processing time to a minimum; pre-processing
times are handled by sPyNNaker and are not accessible to the user. Figure 5.19(b)
shows a performance comparison between SpiNNaker and SpineML. The main
constraints on SpiNNaker currently are the pre- and post-processing times that are
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Raspberry-Pi-based measurement system connected to the SpiNNaker board [244]. The
duration of recording power can be broken down into four regions: (i) booting the
machine; (ii) pre-processing of data; (iii) model execution; (iv) post-processing (i.e. data
extraction); the delay of around 4 s after booting the machine is inserted for clarity. The
peak-to-peak power in region (iii) is 800 mW. (b) Performance analysis of single-channel
and three-channel models running on both SpiNNaker and SpineML. Execution time on
SpiNNaker, and pre- and post-processing times on SpineML are unaffected by scaling-up

of model.

negligible on SpineML running on a 4-core 8 GB RAM desktop host machine, even
for the scaled-up model. In contrast, execution time on SpiNNaker is not affected
by model scaling; execution time for the SpineMLmodel is affected by scale. We
believe that our comparative study will provide a basic framework for mapping
SpiNNaker-based models to SpineML, as well as for performance benchmarking
of SpiNNaker with conventional computers during neuronal simulation.

5.5 Constraint Satisfaction

When developing a biologically inspired hardware architecture, apart from look-
ing for an improvement of our understanding of living matter, it is also desirable
to explore the capabilities of the machine on the realm of more general problems
in Mathematics and Computer Science. If the machine succeeds in representing
or solving any of the well-defined abstract problems, or classes of problems, this
means that it will be applicable to the specific cases that can be formulated under
such formalisms, making the machine attractive for Physics and Engineering. The
more general the class of problem, the broader the range of applications that will
be covered and the better we will understand the capabilities of the design and,
more importantly, we will understand its limitations. Understanding the limits of
applicability of a computational approach is perhaps more important than evolving
its capabilities. The reason being that some problems are indeed intractable in the
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sense that it does not matter how much we improve the speed, power consump-
tion or size of our computers, there are families of problems which, despite being
solvable in principle with infinite resources, will remain intractable at least until
some exotic machine demonstrates an exponential speedup. Quantum and genetic
computers, at least in theory, promise advances in this direction, but the practi-
calities currently seem to be out of scope. Worse than that are the undecidable or
unsolvable problems. Hence, knowing the performance and complexity of a new
computer architecture in the hierarchy of computable and incomputable problems
will shed light on realistic directions for optimisation and improvement, avoiding
the use of valuable time on aspects that will not add significant scientific or tech-
nological value.

Constraint Satisfaction Problems (CSPs) are a special family of problems that
serve such a purpose. They are beautifully simple to formulate, yet they belong to
the class of intractable problems (the NP-complete family). These are problems
whose solutions are verifiable in Polynomial time (P), yet finding their solution
requires supra-polynomial time as a function of the size of the problem. Actu-
ally, evidence suggests that the time complexity may be exponential, that is, a lin-
ear increase of the problem size results in an exponential increase of the required
resources: time or space, memory or energy.

Formally, a CSP is defined by a set of variables X = {x1,..., xy} that take
values over a set of discrete or continuous domains D = {Dq, ..., Dy}, such
that a set of constraints C = {C1, ..., Cy} are satisfied. Each such constraint is
defined as a tuple C; = (S;, R;), where R = {Ry, ..., Ry} are k relations over m
subsets S = {S1,...,Sn : Si € X}. In short, CSP = (X, D, C). Hence, the
problem is defined over a combinatorial space whose size is on the order of EN,
growing exponentially with N. Every solution to a CSP will have zero violations
and include all variables in X. Hence, it will be represented by a global minimum
of the cost hypersurface. If the problem has several solutions, the global minimum
will be degenerate, one minimum existing for each solution. It is easy to see then
that the difficulty of finding a solution for a CSP depends not only on the high
dimensionality of its combinatorial space but also critically on the curvature of that
space. Here, the curvature refers to how folded the space of possible evaluations of
X is when measured against a scalar (energy or cost) function related to the number
of unsatisfied constraints. If the cost function is strictly convex, there will be a single
minimum and methods such as gradient descent will easily find it. Unfortunately,
this is rarely the case.

With a geometrical representation of CSPs, it is easy to imagine solving the prob-
lem by travelling across the cost hypersurface, defined on some high-dimensional
space, looking for a global minimum. Think of it as being like an adventurous
explorer in the middle of the Amazon rain forest, perhaps searching for some



Constraint Satisfaction 151

previously uncontacted peoples. Having a helicopter would certainly be an advan-
tage. Access to a satellite with high-resolution cameras and powerful zooming abili-
ties will save you a lot of time. However, without any of them, you only have access
to local information. Being inside the rain forest, any fancy equipment could only
help you if it has access to some global parameter. That is the problem faced when
solving CSPs. In general, you can provide the solver with local information, but
any global information will only have low resolution, usually obtained from a dis-
crete sampling over the state space, whose useful information content will decrease
drastically with the curvature of the cost function.

Our aim in this section is to explore the representation and solution of CSPs on
SpiNNaker. We stick to the use of spiking neurons, embracing the main purpose
of the machine. However, bear in mind that SpiNNaker is a digital system, built
from general-purpose processors, and has features that allow non-neural implemen-
tations. We will not consider those here. The following is extracted with minor
modifications from Fonseca Guerra and Furber [61].

5.5.1 Defining the Problem

Consider a set V' of neurons obeying a dynamic model defining the time evolution
of a state variable, usually the membrane potential #; and a threshold function 6;
that defines the generation of a spike event whenever the state variable reaches 6;
from below. After a spike u; is forced below the threshold; it can, for example, be
reset to a resting Uyes; Or reset Urese; membrane potential. The SNN is defined
by the set V' together with a set of synapses S C N XN that define connections
between pairs of neurons A; and ;. Each synapse S; ; € S has an associated
weight parameter w; j and a response function R; ; : Rt — R.

Let us also define the instantaneous state of the SNN as w; = {n1, na, ..., ny},
that is, the ordered set of firing states n; € {0, 1} for every neuron in N/; at time 7.
In SpiNNaker, y; is well defined because time is discretised, generally in steps of
1 ms, and at each step, the firing state of a neuron is measurable. This definition
avoids the need to track the membrane potential #; € R of each neuron at each
particular time. Strictly speaking, u; is represented by a 32-bit binary number in
SpiNNaker so its resolution is finite.

In our implementation, each neuron N; corresponds to a LIF neuron [238]. In
this model, the dynamics of the membrane potential u are given by:

du
rmE = —u(t)+ RI(?). (5.4)

Here, 7, is the membrane time constant, R is the membrane resistance
and [ is the external input current. Each time u reaches a threshold value
0 a spike is elicited; such events are fully characterised by the firing times
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{t/ | u(t’) =06 and % lim,_,s > 0}. Immediately after a spike, the potential is
reset to a value u,, such that limz%szr u(t) = u,. In our network, synapses are
uniquely characterised by w;; and the inter-neural separation is introduced by
means of a delay A;;. In biological neurons, each spike event generates an electro-
chemical response on the post-synaptic neurons characterised by R;, j. We use the
same function for every pair (i, j), and this is defined by the post-synaptic current:

. qg _'"h

J) =77 0@ =), (5.5)
where g is the total electric charge transferred through the synapse, 7 is the char-
acteristic decaying time of the exponential function, o = t/ + A;; is the arrival
time of the spike and @ represents the Heaviside step function. The choice of R; ;
potentially affects the network dynamics, and although there are more biologically
realistic functions for the post-synaptic response, the use of the exponential func-
tion in Equation 5.5 constitutes one of our improvements over the previous studies
on CSP through SNNs which used a simple square function.

In an SNN, each neuron is part of a large population. Thus, besides the back-
ground current / (t), it receives input from the other neurons, as well as a stochastic
stimulation from noisy neurons implementing a Poisson process. In this case, the
temporal evolution of the membrane potential (Equation 5.4) generalises to:

d
tmyott = —u(t) + R I(ﬂ-i-;wj;j(t—t}f)'F;ij(t— To)

(5.6)

where the index f accounts for the spike times of principal neuron j in the
SNN, Qy is the strength of the kth random spike, occurring at time 7%, and
Jj(.) is the response function of Equation 5.5. An SNN has the advantage that
its microstate y; = {n1,n2,...,nN} at any time ¢ can be defined by the binary
firing state n; € {0, 1} of each neuron N, instead of the continuous membrane
potentials #; € R. Then, the set of firing times {tl-f } for every neuron N, or
equivalently the set of states {/;}, corresponds to the trajectory (dynamics) of the
network in the state space. The simulations in this work happen in discrete time
(time step = 1 ms) so, in practice, y; defines a discrete stochastic process (e.g. a
random walk). If the next network state y;,,, depends on y;, but is conditionally
independent ofany y;; with j < i, theset {y,} also corresponds to a Markov chain.
Habenschuss ez al. [89] demonstrated that this is the case when using rectangular
Post-Synaptic Potentials (PSPs) and a generalised definition of the network state,
the validity of the Markov property for general SNNs could still depend on the
dynamical regime and be affected by the presence of a non-zero probability current
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for the stationary distribution [39]. Each possible configuration of the system, a
microstate y;, happens with certain probability p; and, in general, it is possible
to characterise the macroscopic state of the network with the Shannon entropy (in
units of bits) [221]:

S =-2 pilogpi (5.7)
and the network activity:
1< f
A(t) = szfla(z—zj) (5.8)
J .

To compute p; and hence Equation 5.7, we binned the spikes from each
simulation with time windows of 200 ms. In this type of high-dimensional
dynamical system, sometimes the particular behaviour of a single unit is not as
relevant as the collective behaviour of the network, described, for example, by
Equations 5.7 and 5.8.

A constraint satisfaction problem (X, D, C) can now be expressed as an SNN as
shown in the pseudo-code of Listing 5.1. We can do it in three basic steps: (a) create
SNNss for each domain d; of each variable, every neuron is then excited by its asso-
ciated noise source, providing the necessary energy to begin exploration of the
states {y}; (b) create lateral-inhibition circuits between all domains that belong to
the same variable; (c) create lateral-inhibition circuits between equivalent domains
of all variables appearing in a negative constraint and lateral-excitation circuits for
domains in a positive constraint. With these steps, the resulting network will be
a dynamical system representation of the original CSP. Different strategies can
now be implemented to enforce the random process over states y; to find the
configuration y that satisfies all the constraints. The easiest and proposed way of
implementing such strategies is through the functional dependence of the noise
intensity on time. The size of each domain population should be large enough to
average out the stochastic spike activity. Otherwise, the system will not be stable
and will not represent quasi-equilibrium states. As will be shown, it is the size of
the domain populations what allows the system to converge into a stable solution.

The ensemble of populations assigned to every CSP variable x; works as a
Winner-Takes-All (WTA) circuit through inhibitory synapses between domain
populations, which tends to allow a single population to be active. However, the
last restriction should not be over-imposed, because it could generate saturation
and our network will be trapped in a local minimum. Instead, the network should
constantly explore configurations in an unstable fashion, converging to equilib-
rium only when satisfiability is found. The random connections between popula-
tions, together with the noisy excitatory populations and the network topology,
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provide the necessary stochasticity that allows the system to search for satisfiable
states. However, this same behaviour traps some of the energy inside the network.
For some problems, a dissipation population could be created to balance the input
and output of energy or to control the entropy level during the stochastic search.
In general, there may be situations in which the input noise acquired through stim-
ulation can stay permanently in the SNN. Thus, the inclusion of more excitatory
stimuli will saturate the dynamics at very high firing rates, which potentially could
reach the limits of the SpiNNaker communication fabric. In these cases, inhibitory
noise is essential too and allows us to include arbitrarily many stimulation pulses.

We demonstrate in the next section that the simple approach of controlling the
dynamics with the stimulation intensities and times of the Poisson sources provides
an efficient strategy for a stochastic search for solutions to the studied CSPs.

# define the CSP = <X,D,C> through a set of lists.
X=list (variables)
D=1list (domains)
S=list (subsets_of (X))

R=list (relations_over(s_i in S))

C=list (constraints = tuple(s_i,r_i))
#a) create an SNN for each variable with sub—populations for each domain.
n = size_of_ensemble

for variable x_i in X:
for domain d_i in D:
population[x_i][d_i] = create an SNN with n neurons
noise_exc[x_i][d_i] = create a set of noise
stimulation populations.
apply_stimuli(noise[x_i][d_i], population[x_i][d_i])
noise_inh[x_i][d_i] = create a set of noise
dissipation populations.
apply_dissipation (noise_inh[x_i][d_i], population[x_i][d_i])
#b) wuse inhibitory synapses to activate, on average, a single domain per
variable
for domain d_i in D:
for domain d_j in D
inhibition (population[x_i][d_i], population[x_i][d_j])
#c) map each constraint to an inhibitory or excitatory synapse.
for constraint c_i in C:
read subset s_i and relation r_i from c_i
for variables x_i and x_j in s_i:
for domain d_i in D:
if constraint relation r_i <O:
inhibition (population[x_i][d_i], population[x_j][d_i])
elif constraint relation r_i >0:
excitation (population[x_i][d_i], population[x_j][d_i])

Listing 5.1. Translation of a CSP into an SNN.

5.5.2 Results

In order to demonstrate the implementation of the SNN solver, we present solu-
tions to some instances of Non-deterministic Polynomial time (NP) problems.
Among the NP-complete problems, we have chosen to showcase instances of graph
colouring, Latin squares and Ising spin glasses. Our aim is to offer a tool for the
development of stochastic search algorithms in large SNNs. We are interested in
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CSPs to gain understanding of the dynamics of SNNs under constraints, how
they choose a particular state and their computational abilities. Ultimately, SNNs
embedded in neuromorphic hardware are intended for the development of new
technologies such as robotics and neuroprosthetics, constantly interacting with
both external devices and the environment. In such applications, the network needs
to adapt itself to time-varying constraints taking one or multiple decisions accord-
ingly, making advances in stochastic search with SNNs a fundamental requirement
for neuromorphics.

5.5.3 Graph Colouring

Consider a graph G defined by the ordered pair {V, E}, with V a set of vertices
and E the set of edges connecting them. The graph colouring problem consists
of finding an assignments of k colours to the elements of the graph (either V, E
or both) such that certain conditions are satisfied [41]. In vertex colouring, for
example, the colours are assigned to the elements of V' in such a way that no two
adjacent nodes (those connected by an edge) have the same colour. A particularly
useful applications of this problem is the process of register allocation in compiler
optimisation which is isomorphic to graph colouring [35]. Regarding time com-
plexity, general graph colouring is NP-complete for k > 2. In the case of planar
graphs, 3-colouring is NP-complete and, thanks to the four-colour theorem proved
by Appel and Haken [5], 4-colouring is in P.

A division of a plane into several regions can be represented by a planar graph,
familiar versions of which are the geographic maps. In Figure 5.20(a), we show
the SNN-solver result of a satisfying 4-colouring of the map of the world where
colours are assigned to countries such that no bordering countries have the same
colour. We have used the list of countries and borders from the United Nations
available in Mathematica Wolfram [113]. The corresponding connectivity graph
of the world map in Figure 5.20(a) is shown in Figure 5.20(b). The insets in Figure
5.20(a) show the results of our solver for 3-colouring of the maps of the territories of
Australia (bottom-right) and of Canada (top-left). Figure 5.20(c) and (d) show the
time dependence of the entropy (top), firing rate (middle) and number of visited
states (bottom) for the map of the world and of Australia, respectively. The colour
code we use in these and the following figures is as follows: red means that the
state in the current time bin is different from the one just visited, green represents
the network staying in the same state and blue means that all constraints are satis-
fied. The dashed vertical lines mark the times at which noise stimulating (blue) or
depressing (red) populations began to be active. The normalised spiking activity of
the four colour populations for four randomly selected countries of the world map
is shown in Figure 5.20(e) evidencing the competing behaviour along the stochastic
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Figure 5.20. (a) Solution to the map colouring problem of the world with 4 colours and
of Australia and Canada with 3 colours (insets). Figure (b) shows the graph of bordering
countries from (a). The plots of the entropy H (top), mean firing spike rate v (middle)
and states count Q (bottom) versus simulation time are shown in (c) and (d) for the
world and Australia maps, evidencing the convergence of the network to satisfying sta-
tionary distributions. In the entropy curve, red codes for changes of state between suc-
cessive time bins, green for no change and blue for the network satisfying the CSP. In
the states count line, black dots mean exploration of new states; the dots are yellow
if the network returns to states visited before. In (e), we have plotted the population
activity for four randomly chosen CSP variables from (a), each line represents a colour

domain.

search. Interestingly, although the network has converged to satisfaction during the
last 20 s (blue region in Figure 5.20(c)), the bottom right plot in Figure 5.20(e)
reveals that due to the last stimulation the network has swapped states preserving
satisfaction, evidencing the stability of the convergence. Furthermore, it is notice-
able in Figure 5.20(d) that new states are visited after convergence to satisfiability;
this is due to the fact that, when multiple solutions exist, all satisfying configura-
tions have the same probability of happening. Although we choose planar graphs
here, the SNN can implement any general graph; hence, more complicated P and
NP examples could be explored.
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5.5.4 Latin Squares

A Latin square is defined as an array of n x n cells in which n groups of n dif-
ferent symbols are distributed in such a way that each digit appears only once in
each row or column. The NP-completeness of solving a partially filled Latin square
was demonstrated by Colbourn [38], and among the useful applications of such a
problem, one can list authentication, error detection and error correction in coding
theory. Here we choose the Sudoku puzzle as an instance of a Latin square, in this
case, n = 9 and in addition to the column and row constraints of Latin squares,
Sudoku requires the uniqueness of the digits in each 3 x 3 sub-grid. We show in
Figure 5.21 the solution to an easy puzzle [57], to a hard Sudoku [89] and to the Al
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Figure 5.21. SNN solution to Sudoku puzzles. (a-c) show the temporal dependence of the
network entropy H, firing rate v and states count Q for the easy (g), hard (h) and Al escar-
got (i) puzzles. The colour code is the same as that of Figure 5.20. In (g-i), red is used
for clues and blue is used for digits found by the solver. Figures (d) and (f) illustrate the
activity for a random selected cell from (a) and from (c), respectively, evidencing com-
petition between the digits, the lines correspond to a smoothing spline fit. () Schematic

representation of the network architecture for the puzzle in (a).
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Escargot puzzle, which has been claimed to be the hardest Sudoku. The temporal
dependence of the network entropy H, firing rate v and states count Q is shown
in Figures 5.21(a)—(c), respectively, for the easy (5.21(g)), hard (5.21(h)) and Al
escargot (5.21(i)) puzzles. In Figure 5.21(e), we show a schematic representation of
the dimensionality of the network for the easy puzzle (g); each sphere represents a
single neuron and synaptic connections have been omitted for clarity; the layer for
digit 5 is represented also showing the inhibitory effect of a single cell in position
(1,3) over its row, column, subgrid and other digits in the cell. In this case, the total
number of neurons is 237 k and they form ~86 M synapses.

One major improvement of our implementation with respect to the work of
Habenschuss ez al. [89] is the convergence to a stable solution; this is arguably due
to the use of subpopulations instead of single neurons to represent the domains
of the CSP variables as these populations were required to provide stability to the
network. The use of the more realistic exponential post-synaptic potentials instead
of the rectangular ones used by Habenschuss ez a/. [89] helps deliver a good search
performance as shown in the bottom plots in Figure 5.21(a)—(c), where the solution
is found after visiting only 3, 12 and 26 different states and requiring 0.8's, 2.8's
and 6.6, respectively, relating well also with the puzzle hardness. It is important
to highlight that the measurement of the difficulty level of a Sudoku puzzle is still
ambiguous and our solver could need more complex strategies for different puzzles,
for example, in the transient chaos-based rating the ‘platinum blonde’ Sudoku is
rated as one of the hardest to solve, and although we have been able to find a solution
for it, it is not stable, which means one should control the noisy network dynamics
in order to survive the long escape rate of the model presented by Ercsey-Ravasz
and Toroczkai [57]. We show in Figure 5.21(d) and (f) the competing activity of
individual digit populations of a randomly chosen cell in both the easy and the
Al escargot puzzles. The dynamic behaviour resembles that of the dynamic solver
in Figure 2 of the work by Ercsey-Ravasz and Toroczkai [57] for this same easy
puzzle and platinum blonde. Further analysis would bring insights into the chaotic
dynamics of SNNs when facing constraints.

555 Ising Spin Systems

For each atom that constitutes a solid, it is possible to define a net spin magnetic
moment i resulting from the intrinsic spin of the subatomic particles and the
orbital motion of electrons around their atomic nucleus. Such magnetic moments
interact in complex ways giving rise to a range of microscopic and macroscopic
phenomena. A simple description of such interactions is given by the Ising model,
where each £ in a crystal is represented by a spin S taking values from {41, —1}
on a regular discrete grid of points {i, j, k}. Furthermore, the interaction of the
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spins {8;} is considered only between nearest neighbours and represented by a con-
stant J; ; which determines if the two neighbouring spins will tend to align parallel
Ji,j > 0 oranti-parallel J; ; < 0 with each other. Given a particular configuration
of spin orientations @, the energy of the system is then given by the Hamiltonian
operator:

H==>1;SS;—h> S (5.9)
i i

i,j

where & is an external magnetic field that tends to align the spins in a preferential
orientation [9]. In this form, each J; ; defines a constraint C; ; between the values
D = {+1, —1} taken by the variables S; and §, It is easy to see that the more con-
straints are satisfied, the lower the value of 71 becomes in Equation 5.9. This simple
model allows the study of phase transitions between disordered configurations at
high temperature and ordered ones at low temperature. For ferromagnetic J; ; > 0
and antiferromagnetic J; ; < 0 interactions the configurations are similar to those
in Figure 5.22(d) and (e) for 3D lattices. These correspond to the stable states of
our SNN solver when the Ising models for J; j > O and J; ; < 0are mapped to an
SNN using Algorithm 5.1 and a 3D grid of 1,000 spins. Figure 5.22(g) shows the
result for a 1D antiferromagnetic spin chain. It is interesting to note that the statis-
tical mechanics of spin systems has been extensively used to understand the firing
dynamics of SNNs, presenting a striking correspondence between their behaviour
even in complex regimes. Our framework allows the inverse problem of mapping
the SNN dynamics to spin interactions. This equivalence between dynamical sys-
tems and algorithms has largely been accepted and we see an advantage in com-
puting directly between equivalent dynamical systems. However, it is clear that the
network parameters should be adequately chosen in order to keep the computation
valid.

If instead of fixing J; ; to some value U for all spin pairs {(i, j)} one allows
it to take random values from {U, —U} with probabilities p4r and pgas, it will
be found that certain interactions would be frustrated (unsatisfiable constraints).
Figure 5.22(f) illustrates the frustration with three antiferromagnetic interacting
spins in a way that any choice of orientation for the third spin will conflict with
one or the other. This extension of the Ising model when the grid of interactions
is a random mixture of AF and FM interactions was described by Surungan ez 4.
[246]. The model is the representation of the spin glass systems found in nature;
these are crystals with low concentrations of magnetic impurities that, due to the
frustrated interactions, are quenched into a frozen random configuration when the
temperature is lowered (at room or high temperature the magnetic moments of a
material are constantly and randomly precessing around their average orientation).
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Figure 5.22. SNN simulation of Ising spin systems. (a) and (b) show two 2-dimensional
spin glass quenched states obtained with interaction probabilities psr = 0.5 and par =
0.1. The results for the three-dimensional lattices for CSPs of 1,000 spins with ferromag-
netic and antiferromagnetic coupling constant are shown in (e) and (d), respectively. In
(c) are plotted the temporal dependence of the network entropy H, firing rate v and
states count Q during the stochastic search for the system in (d). (f) illustrates the origin
of frustrated interactions in spin glasses. (g) depicts the result for the one-dimensional
chain.

The statistical analysis of those systems was fundamental for the evolution of artifi-
cial neural networks and machine learning. Furthermore, the optimisation problem
of finding the minimum energy configuration of a spin glass has been shown to be
NP-complete [9]. The quenching of the grid happens when it gets trapped in a
local minimum of the state space of all possible configurations. In Figure 5.22(a)
and (b), we show a quenched state found by our SNN with p4r = 0.5 and
par = 0.1, respectively. A spin glass in nature will often be trapped in local min-
ima and will need specific temperature variations to approach a lower energy state;
our SNNGs replicate this behaviour and allow for the study of thermal processes,
controlling the time variation and intensity of the excitatory and inhibitory stim-
ulations. If the underlying stochastic process of such stimulations is a good rep-
resentative of heat in solids, they will correspond to an increase and a decrease of
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temperature, respectively, allowing, for example, the implementation of simulated
annealing optimisation. Figure 5.22(c) shows the time evolution of the entropy,
firing rate and states count for the antiferromagnetic 3D lattice of Figure 5.22(d).
Similar plots, but converging to unsatisfying states, are found for the spin glasses
in Figure 5.22(a) and (b). In the case of the ferromagnetic lattice in 5.22(e) with
a very low noise, the network immediately converges to a solution. If the noise is
high, however, it is necessary to stimulate the network several times to have a per-
fect ordering. This is because more noise implies more energy to violate constraints;
even in nature, magnetic ordering is lost at high temperatures.






