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Abstract—Fast, localised motion detection is crucial for an
efficient attention mechanism. We show that modelling a network
capable of such motion detection can be performed using spiking
neural networks simulated on many-core neuromorphic hard-
ware. Moreover, highly sensitive neurons arise from the presented
network architecture through unsupervised self-organisation. We
use a synaptic rewiring rule which has been shown to enable
the formation and refinement of neural topographic maps. Our
extension allows newly formed synapses to be initialised with a
delay drawn from a uniform distribution. Repeated exposure to
moving bars enables neurons to be sensitised to a preferred direc-
tion of movement. Incorporating heterogeneous delays results in
more sensitive neural responses. A readout mechanism involving
a neuron for each learnt motion is sufficient to establish the input
stimulus class.

Index Terms—SpiNNaker, Neuromorphic computing, Spiking
Neural Network, structural plasticity, synaptic rewiring, topo-
graphic maps

I. INTRODUCTION

Neuromorphic platforms are relatively novel computational
systems designed to mimic key aspects of mammalian brain
operation: massive parallelism, low energy consumption,
fault tolerance and sparsity. These platforms come in mul-
tiple flavours ranging from full-custom chip design (mixed
analogue-digital [1] and fully digital designs [2]) to using a
vast array of off-the-shelf components. SpiNNaker [3] (the
full system is pictured in Fig. 1) is a digital many-core
neuromorphic platform designed to simulate a vast number
of biologically-inspired spiking neurons in real time.

Novel computing architectures require the development of
new methodologies and tools to harness their full capabilities.

The design and construction of the SpiNNaker machine was supported
by EPSRC (the UK Engineering and Physical Sciences Research Council)
under grants EP/D07908X/1 and EP/G015740/1, in collaboration with the
universities of Southampton, Cambridge and Sheffield and with industry
partners ARM Ltd, Silistix Ltd and Thales. Ongoing development of the
software is supported by the EU ICT Flagship Human Brain Project (H2020
785907), in collaboration with many university and industry partners across
the EU and beyond.

Fig. 1: The 1 million ARM-core SpiNNaker machine. Capable
of simulating on the order of 200 million neurons, with 1,000
synapses each, in real-time.

While using ARM technology for the 18 computational cores
present on chip, SpiNNaker has been designed specifically for
spiking neural network (SNN) simulations using a purpose-
built router and attaching small amounts of fast memory to
each individual core.

We build on previous work [4] and present an end-to-end
approach to perform elementary motion decomposition using
leaky integrate-and-fire neurons and structural and synaptic
plasticity [5]. Further, the computational platform which is
the basis for these simulations is event-driven [6], including
the spiking visual input provided to the network. The biologi-
cally inspired sensory processing method presented here is an
alternative to traditional frame-based computer vision.

We show that (1) the presented architecture allows for
unsupervised learning; that (2) synaptic rewiring enhanced to
initialise synapses by drawing from a distribution of delays
produces more specialised neurons; and that (3) a pair of
readout neurons is sufficient to correctly classify the input
based on the target layer’s activity using rank-order encoding
(first classification neuron to spike wins), rather than spike-
rate encoding (classification neuron which fires most in a time
period wins).
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Fig. 2: (a) Network architecture. (b) Example input 45◦

degree movement represented as its constituent frames (before
processing to generate spikes). A new frame is presented every
5 ms and, in total, the presentation of an entire pattern takes
200 ms.

II. METHODS

The SNN architecture (pictured in Fig. 2a) is designed to
allow unsupervised learning through self-organisation using
synaptic and structural plasticity mechanisms [5]. Neurons in
the two target populations are modelled as being positioned
at integer locations on a 32× 32 grid with periodic boundary
conditions. The excitatory population contains neurons which
receive sparse excitatory connections from the input layers
and from themselves, while projecting to the inhibitory layer
and to the readout neurons responsible for the final motion
classification decision. The inhibitory population follows a
similar structure, but only projects using inhibitory synapses.
Very strong inhibition is also present between the readout
neurons, implementing a winner-takes-all circuit. The net-
works are described using the PyNN simulator-independent
language for building neuronal network models [7] and the
SpiNNaker-specific software package for running PyNN simu-
lations (sPyNNaker [6])1. The model is simulated in real time
on the SpiNNaker many core neuromorphic platform using
previously presented neuron and synapse dynamics [5].

The input stimulus consists of bars encoded using spikes
representing “ON” and “OFF” pixels (see Fig. 2b for an exam-
ple before filtering using a previously described technique [8])

1The data and code used to generate the results presented in this paper are
available from doi: 10.17632/wpzxh93vhx.1

as well as a background level of Poisson noise (5 Hz). Each
stimulus is presented over a 200 ms time period always
moving at a constant speed (200 frames per second). During
training the target layers are presented with bars moving in
two directions (Eastward or at 0◦ and Northward or at 90◦),
but during testing they are presented with moving bars in all
directions (randomised over time, in 5 degree increments) –
weights and connectivity are fixed during this latter phase. The
simulations are initialised with no connections and are trained
for around 5 hours, while testing occurs over 20 minutes. As
a result of the chosen testing regime, the networks sees over
80 moving bar presentations at each of the 72 angles. This
allows us to perform a pair-wise independent t-test between
the responses at each of the angles in the two cases and
establish whether their responses are statistically different. The
readout neurons are trained and tested separately from the rest
of the network – this process takes on the order of a minute.

Using the structural plasticity mechanism implemented for
SpiNNaker, new synapses are formed in two regimes: with
heterogeneous, random delays ([1, 15] ms, uniformly drawn)
and homogeneous, constant (1 ms) delays; the latter is taken to
be the control experiment. Further, according to the structural
plasticity mechanism, depressed synapses are more likely to
be removed. This optimises the use of the limited synaptic
capacity available for each post-synaptic neuron [9]; neurons
have a fixed maximum fan-in of 128 synapses with delays
which do not change over time.

The direction selectivity index (DSI) will be computed for
each neuron after training: DSI = (Rpref − Rnull)/Rpref ,
where Rpref is the response of a neuron in the preferred
direction, and Rnull is the response in the opposite direc-
tion [10]. We compute it for each of the possible directions
and establish the preferred direction as that which maximises
the DSI after performing a weighted average of neighbouring
responses, reducing the influence of noise.

III. RESULTS

The response of the excitatory population in each regime
(incorporating heterogeneous delays or not) is plotted for each
testing direction (minimum, mean and maximum responses
presented in Fig. 3a). The polar plot reveals the firing rate
(Hz) of neurons during testing when the input is moving in
each of the 72 directions from 0◦ to 355◦ in 5◦ increments in
a random order. The network response shows that neurons are
responding preferentially to movement, rather than simply to
the shape of the input, because the response is asymmetrical –
it can differentiate between e.g. a vertical bar moving Eastward
and the same vertical bar moving Westward. The pair-wise in-
dependent t-test is performed to compare the network response
in the two regimes (Fig. 3c, red line signifies that p ≥ 0.001
for that particular angle); the response is higher in one training
direction (90◦) and less in the other (0◦) for the network with
heterogeneous delays compared to the control. As such, we
proceed by examining individual neurons rather than the av-
erage network behaviour. The spatial organisation of neurons
and their preferred angle is presented in Fig. 3b, showing that
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Fig. 3: (a) – minimum, mean and maximum aggregate ex-
citatory population firing response (Hz); (b) – neuron angle
preference based on maximum firing rate (the colour) and
DSI (the arrow is present if DSI ≥ 0.5); (c) – pair-wise
independent t-test comparing the network with heterogeneous
delays (on the left in a and b) compared to the control, red
lines = insignificant results; (d) – selected individual neuron
responses (random delays); (e) – DSI distribution comparison.
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Fig. 4: Network behaviour evolution with longer simulation
run times. (a) - average network firing response during in-
ference when trained for ever increasing times; (b) - DSI
distribution displayed as a boxplot for each simulation in (a).
Note: Each data point is a different simulation.

local neural neighbourhoods become sensitised to the same
input statistics. There we also look at neurons’ maximum
responses (encoded by the colour of the cell) in conjunction
with the direction which maximises DSI (arrow direction) and
DSI ≥ 0.5 (arrow presence). The direction selectivity index
histogram presented in Fig. 3e. compares the two networks;
the control network has significantly fewer selective neurons
(251 compared to 744) and selectivity is lower on average.
Individual responses of our simulated neurons resemble the
direction selectivity found in Superior Colliculus [11].

Further, we examine the network behaviour over a wide
range of simulations times, ranging from 40 minutes up to 20
hours. Figure 4a shows the evolution of the population-level
firing rate and the evolution of the DSI metric (Fig. 4b). The
network is thus shown to be stable over long periods of time,
rather than showing destructive dynamics.

A readout or classification mechanism relying on 2 mutually
inhibitory neurons is sufficient to resolve the two directions
presented in the input. Static excitatory connectivity origi-
nating from the excitatory layer results in a potential 100%
classification accuracy based on rank-order encoding. After 40
seconds, the two neurons have self-organised to respond to one
of two input patterns. Figure 5 shows the spiking behaviour
of the two neurons in the first 1.8 seconds of training and
testing. Spike-timing dependent plasticity (STDP) reduces the
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Fig. 5: Initial spiking activity of the two readout neurons
during training (a) and testing (b). The full-height vertical bars
denote the edges of the pattern presentation time bins (every
tstim = 200 ms). Neuron class is established post-hoc as the
one which maximises classification accuracy.

latency in neural response to the stimuli, making the neurons
respond to the stimulus onset, thus making them ideal for
classification using rank-order encoding, rather than a winner-
takes-all classification based on spike count across a time
period [4].

IV. DISCUSSION

We have shown that neurons become sensitised in an unsu-
pervised manner to bars moving in various directions through
local learning mechanisms and an interplay between lateral
excitation and inhibition. They self-organise their connectivity
through synaptic plasticity and rewiring. The rewiring rule
with heterogeneous delays selects ideal spatial distributions
of synaptic delays driven by STDP. With the current experi-
mental setup, two readout neurons are sufficient for accurate
classification of input bar movement direction.

Future work will focus on processing larger and more real-
istic scenes, as well as handwritten digits. For this, the output
layer could be enhanced to produce a correct readout more
consistently, e.g through the use of populations of neurons
rather than individuals; readout populations would also allow
the encoding of the location in the receptive field of the moving
bar, rather than its current status as a binary flag of whether
a specific movement direction is presented in the input. The
readout layer would eventually be replaced entirely using the
structures as presented herein to form a more complete visual
cortex model. Finally, we will explore further means to control
the response of neurons and ensure maximum selectivity for
them all.
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